



RoHS

Specification

X42180-08

X42180-08

Description

Z-Power series is designed for high current operation and high flux output applications.

Z-Power LED's thermal management perform exceeds other power LED solutions.

It incorporates state of the art SMD design and Thermal emission material.

Z Power LED is ideal light sources for general illumination applications, custom designed solutions, automotive large LCD backlights

X42180-08

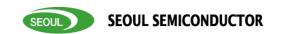
Features

- Super high flux output and high luminance
- Designed for high current operation
- Low thermal resistance
- SMT solderability
- Lead free product
- RoHS compliant

Applications

- Mobile phone flash
- Automotive interior /
 Exterior lighting
- Automotive signal lighting
- Torch
- Architectural lighting
- LCD TV / Monitor backlight
- Projector light source
- Traffic signals
- Task lighting
- Decorative/Pathway lighting
- Remote / Solar powered lighting
- Household appliances

OCTOBER 2012


www.seoulsemicon.com

[Contents]

- 1. Full code of XX LED series
- 2. Outline dimensions
- 3. Characteristics of X42180-08
- 4. Characteristic diagrams
- 5. Labeling
- 6. Packing
- 7. Recommended solder pad
- 8. Soldering
- 9. Precaution for use
- 10. Handling of Silicone Resin LEDs

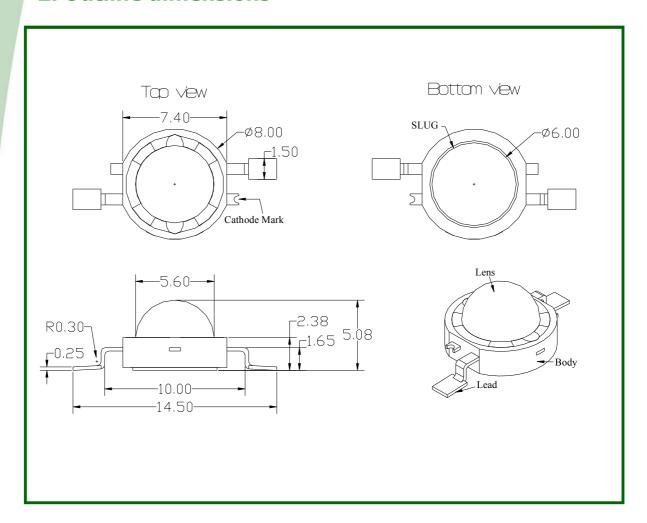
1. Full code of X42180-08 series

Full code form : $X_1 X_2 X_3 - X_4 X_5 - X_6 X_7 - X_8 X_9$

1. Part Number

X ₁	Company
X_2	
X ₃	Z-Power LED series number
X ₄	Chip quantity (or Power Dissipation)
X ₅	Package outline size
X ₆	Type of PCB
X ₇	Grade of characteristic code

2. Internal Number


X _{8 /} X ₉	Revision No.

3. Code Labeling

X ₁₀	Luminous flux (or Radiant flux for royal blue)
$X_{11}, X_{12}, X_{13}, X_{14}$	Dominant wavelength (or x,y coordinates rank code)
X ₁₄	Forward voltage

2. Outline dimensions

Notes:

- 1. All dimensions are in millimeters. (tolerance : ± 0.2)
- 2. Scale: none
- 3. Slug of package is connected to anode.
- * The appearance and specifications of the product may be changed for improvement without notice.

Pure White (W42180-08)

1-1 Electro-Optical characteristics at 350mA

(Ta=25°C, RH30%)

Parameter	Symbol	Value			Unit
	Symbol	Min	Тур	Max	Offic
Luminous Flux [1]	Φ _V ^[2]	-	110	-	lm
Luminous Flux [2]	Ф _V (Тj=100°С)	-	94	-	1111
Correlated Color Temperature ^[3]	ССТ	ı	6000	ı	K
CRI	R _a	-	70	-	-
Forward Voltage [4]	V_{F}	ı	3.3	-	V
Thermal resistance (J to S)	Rθ _{J-S}		6.2		K/W
View Angle	2Θ ½		123		deg.

1-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	т	1000	mA
	I_{F}	1500(1/10duty@1kHz)	IIIA
Reverse Voltage	V_R	5	V
Power Dissipation	P_{d}	4	W
Junction Temperature	T_{j}	145(@ I _F ≤1000mA)	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC
Storage Temperature	T _{stg}	-40 ~ +100	oC
ESD Sensitivity [5]	-	±8,000V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : 0.005, CCT $\pm 5\%$ tolerance.
- [4] Tolerance is $\pm 0.06V$ on forward voltage measurements
- [5] A zener diode is included to protect the product from ESD.

OCTOBER 2012

www.seoulsemicon.com

Neutral White (S42180-08)

1-1 Electro-Optical characteristics at 350mA

(Ta=25°C, RH30%)

Parameter	Symbol	Value			Unit
	Symbol	Min	Тур	Max	Oilic
Luminous Flux [1]	Φ _V ^[2]	-	88	-	lm
Luillillous Flux [2]	Ф _V (Тj=100°С)	-	74	-	1111
Correlated Color Temperature ^[3]	ССТ	ı	4000	ı	K
CRI	R _a	-	91	-	-
Forward Voltage [4]	V_{F}	-	3.3	-	V
Thermal resistance (J to S)	Rθ _{J-S}		6.2		K/W
View Angle	20 ½		123		deg.

1-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	т	700	mA
	I_{F}	1000(1/10duty@1kHz)	IIIA
Reverse Voltage	V_R	5	V
Power Dissipation	P_d	4	W
Junction Temperature	T_{j}	145(@ I _F ≤1000mA)	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC
Storage Temperature	T _{stg}	-40 ~ +100	oC
ESD Sensitivity [5]	-	±8,000V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : 0.005, CCT $\pm 5\%$ tolerance.
- [4] Tolerance is $\pm 0.06V$ on forward voltage measurements
- [5] A zener diode is included to protect the product from ESD.

OCTOBER 2012

www.seoulsemicon.com

Neutral White (S42180H-08)

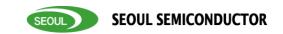
1-1 Electro-Optical characteristics at 350mA

(Ta=25°C, RH30%)

Parameter	Symbol	Value			Unit
	Symbol	Min	Тур	Max	Oilit
Luminous Flux [1]	Φ _V ^[2]	-	98	-	lm
Luminous Flux [2]	Ф _V (Тj=100°С)	-	84	-	1111
Correlated Color Temperature ^[3]	ССТ	ı	4000	ı	К
CRI	R _a	-	80	-	-
Forward Voltage [4]	V_{F}	ı	3.3	-	V
Thermal resistance (J to S)	Rθ _{J-S}		6.2		K/W
View Angle	2Θ 1⁄2		123		deg.

1-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	т	700	mA
	I_{F}	1000(1/10duty@1kHz)	IIIA
Reverse Voltage	V_R	5	V
Power Dissipation	P_{d}	4	W
Junction Temperature	T _j	145(@ I _F ≤1000mA)	°C
Operating Temperature	T_{opr}	-40 ~ +85	oC
Storage Temperature	T_{stg}	-40 ~ +100	oC
ESD Sensitivity [5]	-	±8,000V HBM	-


*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : 0.005, CCT $\pm 5\%$ tolerance.
- [4] Tolerance is $\pm 0.06V$ on forward voltage measurements
- [5] A zener diode is included to protect the product from ESD.

OCTOBER 2012

www.seoulsemicon.com

Warm White (N42180-08)

1-1 Electro-Optical characteristics at 350mA

(Ta=25°C, RH30%)

Parameter	Symbol	Value			Unit
	Symbol	Min	Тур	Max	Oilic
Luminous Flux [1]	Φ _V ^[2]	-	84	-	lm
Luminous Flux [1]	Ф _V (Тj=100°С)	-	71	-	1111
Correlated Color Temperature ^[3]	ССТ	ı	3000	ı	K
CRI	R _a	-	91	-	-
Forward Voltage [4]	V_{F}	-	3.3	-	V
Thermal resistance (J to S)	Rθ _{J-S}		6.2		K/W
View Angle	20 ½		123		deg.

1-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	т.	700	mA
	I_{F}	1000(1/10duty@1kHz)	IIIA
Reverse Voltage	V_R	5	V
Power Dissipation	P_d	4	W
Junction Temperature	T_{j}	145(@ I _F ≤1000mA)	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC
Storage Temperature	T _{stg}	-40 ~ +100	oC
ESD Sensitivity [5]	-	±8,000V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : 0.005, CCT $\pm 5\%$ tolerance.
- [4] Tolerance is $\pm 0.06V$ on forward voltage measurements
- [5] A zener diode is included to protect the product from ESD.

OCTOBER 2012

www.seoulsemicon.com

Warm White (N42180H-08)

1-1 Electro-Optical characteristics at 350mA

(Ta=25°C, RH30%)

Parameter	Symbol	Value			Unit
	Symbol	Min	Тур	Max	Offic
Luminous Flux [1]	Φ _V ^[2]	-	93	-	lm
Luminous Flux [2]	Ф _V (Тj=100°С)	-	78	-	1111
Correlated Color Temperature ^[3]	ССТ	ı	3000	ı	K
CRI	R _a	-	80	-	-
Forward Voltage [4]	V_{F}	ı	3.3	-	V
Thermal resistance (J to S)	Rθ _{J-S}		6.2		K/W
View Angle	2Θ 1⁄2		123		deg.

1-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	700	- mA
		1000(1/10duty@1kHz)	
Reverse Voltage	V_R	5	V
Power Dissipation	P_{d}	4	W
Junction Temperature	T _j	145(@ I _F ≤1000mA)	°C
Operating Temperature	T_{opr}	-40 ~ +85	٥C
Storage Temperature	T_{stg}	-40 ~ +100	٥C
ESD Sensitivity [5]	-	±8,000V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : 0.005, CCT $\pm 5\%$ tolerance.
- [4] Tolerance is $\pm 0.06V$ on forward voltage measurements
- [5] A zener diode is included to protect the product from ESD.

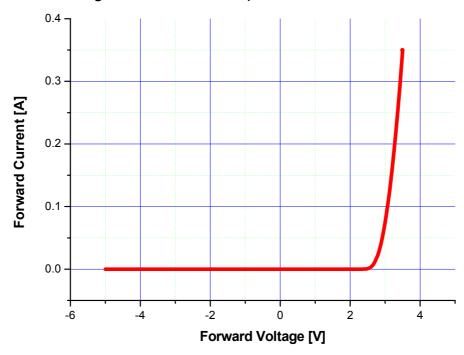
OCTOBER 2012

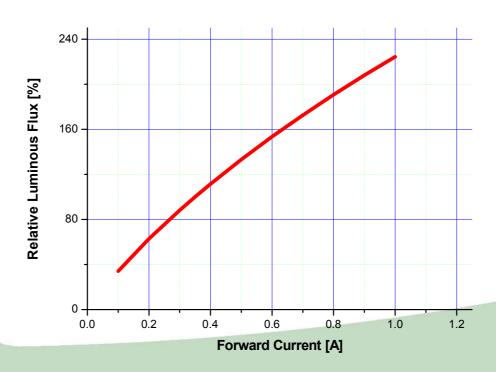
www.seoulsemicon.com

4. Characteristic diagrams

Color Spectrum

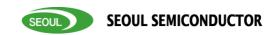
(IF=350mA, Ta=25℃, RH30%)



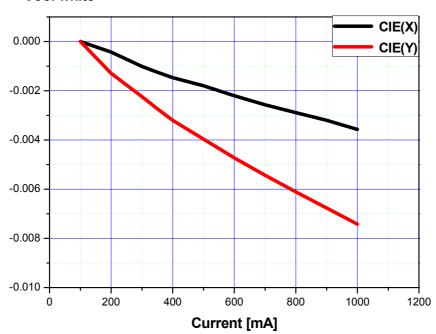


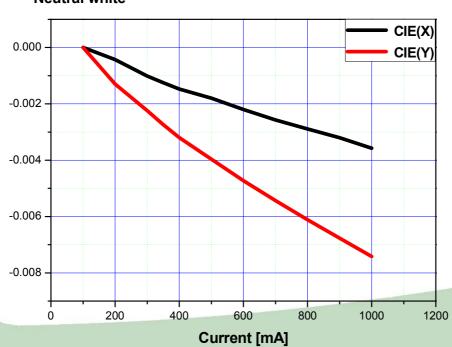
Forward Current Characteristics

Forward Voltage vs. Forward Current, Ta=25 ℃


Forward Current vs. Normalized Relative Luminous Flux, Ta=25%...

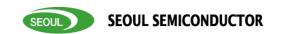
OCTOBER 2012


www.seoulsemicon.con


Chromaticity Coordinate vs. Forward Current, Ta=25 °C (Cool white)

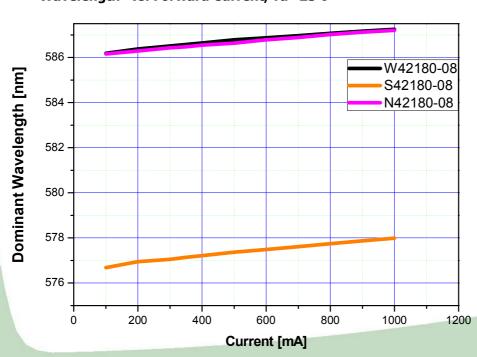
Cool white

Chromaticity Coordinate vs. Forward Current, Ta=25 °C (Neutral white)


Neutral white

OCTOBER 2012

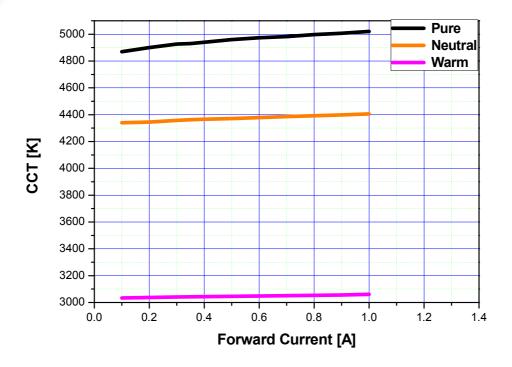
www.seoulsemicon.com


1200

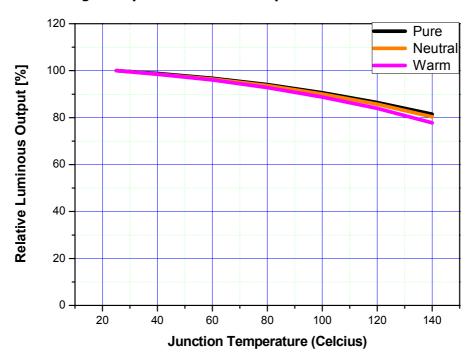
Chromaticity Coordinate vs. Forward Current, Ta=25 °C (Warm white)

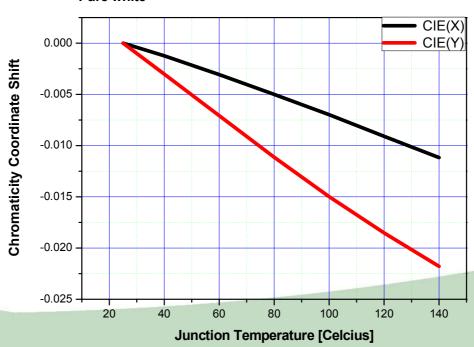
Warm white CIE(X) 0.000 CIE(Y) -0.002 -0.004 -0.006 -0.008 -0.010 -200 400 600 800 1000

Current [mA]


Wavelength vs. Forward Current, Ta=25℃

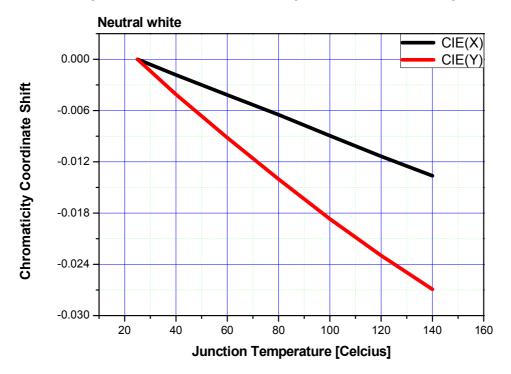
CCT vs. Forward Current, Ta=25 ℃

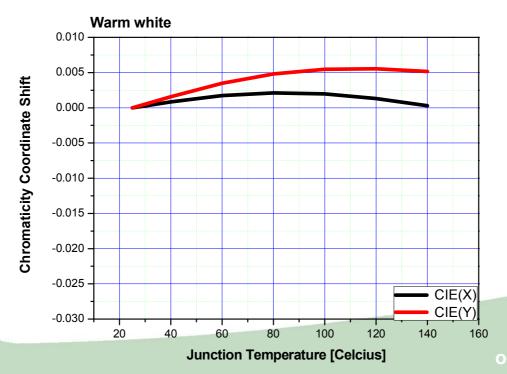



Junction Temperature Characteristics

Relative Light Output vs. Junction Temperature at IF=350mA

Chromaticity Coordinate vs. Junction Temperature at IF=350mA (Pure white)

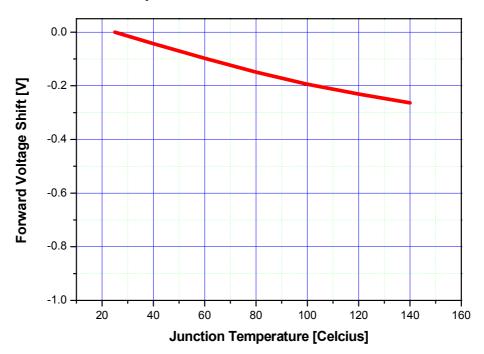

Pure white


OCTOBER 2012

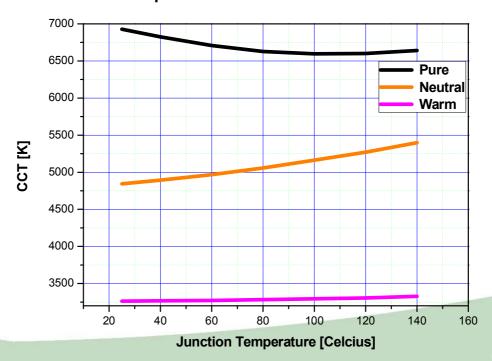
www.seoulsemicon.com

Chromaticity Coordinate vs. Junction Temperature at IF=350mA (Neutral white)

Chromaticity Coordinate vs. Junction Temperature at IF=350mA (Warm white)


www.seoulsemicon.com

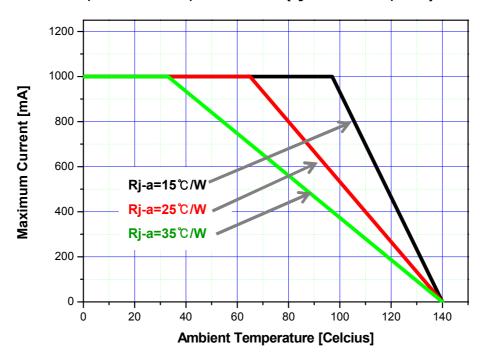
000 00 7 07 10 (0 00)

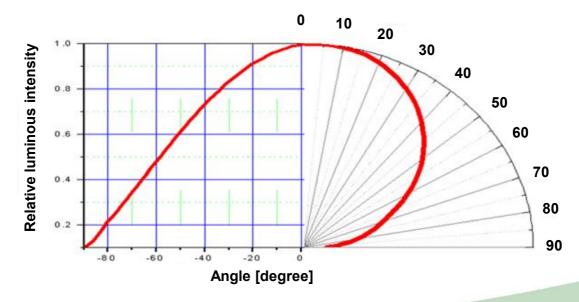


VF vs. Junction Temperature at IF=350mA

CCT vs. Junction Temperature at IF=350mA

OCTOBER 2012


www.seoulsemicon.com



Characteristic diagrams

Ambient Temperature vs. Allowable Forward Current Pure White, Neutral White, Warm White (Tjmax = 145℃, @1A)

Radiation pattern at 350mA

OCTOBER 2012

www.seoulsemicon.com

5. Labeling

RANK:	X10X11X12X13X14
	2X 102 X 112 X 122 X 132 X 14
QUANTITY: 500	
LOT NUMBER: XXXXXX	XXXXX-XXX-XXXXXXX
SSC PART NUMBER : XXX	XXXXX-XX
$X_1X_2X_3$	$X_4X_5X_6X_7$ - X_8X_9
SEOUL	

Full code form:

1. Part Number

- X₁: Color

- X₂: Z-Power LED series number

- X₃: LENS type

- X₄: Chip quantity (or Power Dissipation)

- X₅: Package outline size

- X₆: Type of PCB

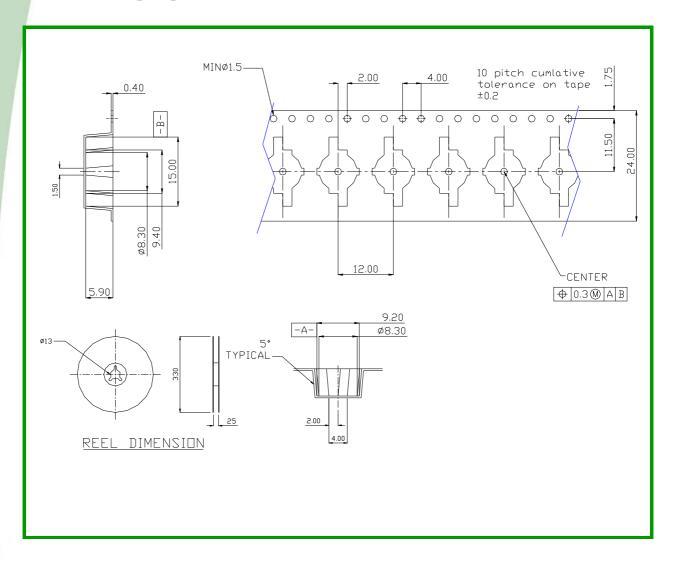
- X_7 : Grade of characteristic code

2. Internal Number

- X_{8.} X₉: Revision No.

3. Code Labeling

- X_{10} : Luminous flux (or Radiant flux for royal blue)


- X₁₁ X₁₂ X₁₃: Dominant wavelength (or x,y coordinates rank code)

- X₁₄: Forward voltage

OCTOBER 2012

www.seoulsemicon.com

6. Packaging


Note:

- 1. The number of loaded products in the reel is 500ea
- 2. All dimensions are in millimeters (tolerance : ± 0.2)
- 3. Scale none
- *The appearance and specifications of the product may be changed for improvement without notice.

OCTOBER 2012

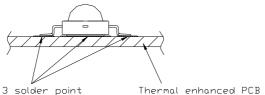
www.seoulsemicon.com

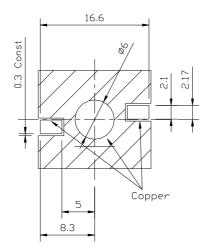
Packaging

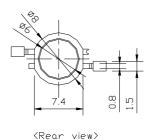
Note:

- 1. 6~10 reels are loaded in box
- 2. Scale none
- 3. For more information about binning and labeling, refer to the Application Note 1

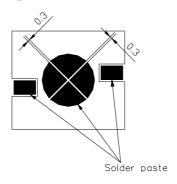
OCTOBER 2012


www.seoulsemicon.com

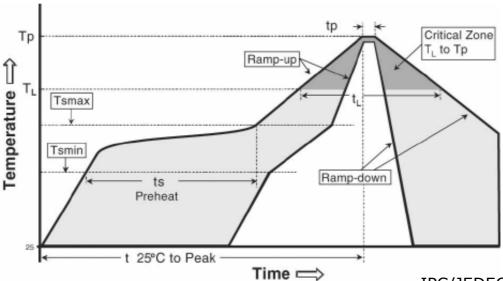




7. Recommended solder pad


1. Solder pad

2. Solder paste pattern


Note:

- 1. All dimensions are in millimeters (tolerance : ± 0.2)
- 2. Scale none
- *The appearance and specifications of the product may be changed for improvement without notice.

OCTOBER 2012

www.seoulsemicon.com

8. Soldering

IPC/JEDEC J-STD-020C

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (Tsmax to Tp)	3° C/second max.	3° C/second max.
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (Tsmin to Tsmax) (ts)	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds
Time maintained above: - Temperature (TL) - Time (tL)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak Temperature (Tp)	215℃	260℃
Time within 5°C of actual Peak Temperature (tp)2	10-30 seconds	20-40 seconds
Ramp-down Rate	6 °C/second max.	6 °C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

* Caution

- 1. Reflow soldering should not be done more than one time.
- 2. Repairs should not be done after the LEDs have been soldered. When repair is unavoidable, suitable tools must be used.
- 3. Die slug is to be soldered.
- 4. When soldering, do not put stress on the LEDs during heating.
- 5. After soldering, do not warp the circuit board.
- 6. Recommend to use a convection type reflow machine with 7 \sim 8 zones.

OCTOBER 2012

www.seoulsemicon.com

9. Precaution for use

Storage

To avoid the moisture penetration, we recommend storing Z Power LEDs in a dry box (or desiccator) with a desiccant. The recommended storage conditions are Temperature 5 to 30 degrees Centigrade. Humidity 50% maximum.

- Precaution after opening packaging
 However LED is correspond SMD, when LED be soldered dip, interfacial separation may affect the light transmission efficiency, causing the light intensity to drop.
 Attention in followed.
 - a. Soldering should be done right after opening the package (within 24Hrs).
 - b. Keeping of a fraction
 - Sealing
 - Temperature : 5 ~ 40 °C Humidity : less than 30%
 - c. If the package has been opened more than 1week or the color of desiccant changes, components should be dried for 10-12hr at $60\pm5\,^{\circ}$ C
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temp. after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Anti radioactive ray design is not considered for the products listed here in.
- Gallium arsenide is used in some of the products listed in this publication. These products are
 dangerous if they are burned or shredded in the process of disposal. It is also dangerous to
 drink the liquid or inhale the gas generated by such products when chemically disposed.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc.

 When washing is required, IPA(Isopropyl Alcohol) should be used.
- When the LEDs are illuminating, operating current should be decided after considering the package maximum temperature.
- LEDs must be stored to maintain a clean atmosphere. If the LEDs are stored for 3 months or more after being shipped from SSC, a sealed container with a nitrogen atmosphere should be used for storage.
- The appearance and specifications of the product may be modified for improvement without notice.
- Long time exposure of sunlight or occasional UV exposure will cause lens discoloration.
- The slug is connected to the anode. Therefore, we recommend to isolate the heat sink.
- Attaching LEDs, don't use adhesives to generate organic vapor.

OCTOBER 2012

Handling of Silicone resin LEDs

Z-Power LED is encapsulated by silicone resin for the highest flux efficiency.

Notes for handling of Silicone resin Z-Power LEDs

- Avoid touching silicone resin parts especially by sharp tools such as Pincette(Tweezers)
- Avoid leaving fingerprints on silicone resin parts.
- Dust sensitivity silicone resin need containers having cover for storage.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevent.
- Please do not force over 2000 gf impact or pressure diagonally on the silicon lens.
 It will cause fatal damage of this product
- Please do not recommend to cover the silicone resin of the LEDs with other resin (epoxy, urethane, etc)
- Please do not mold this product into another resin (epoxy, urethane, etc) and do not handle this product with acid or sulfur material in sealed space.

OCTOBER 2012

www.seoulsemicon.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Power LEDs - White category:

Click to view products by Seoul Semiconductor manufacturer:

Other Similar products are found below:

LTW-K140SZR40 B42180-08 STW8Q2PA-R5-HA LTPL-P00DWS57 LTW-K140SZR30 LZP-D0WW00-0000 SAW8WA2A-L35M40-CA SZ5-M1-WW-C8-V1/V3-FA LTW-K140SZR57 LTW-K140SZR27 BXRE-50C2001-C-74 LTW-5630AQL57 MP-5050-8100-27-80 MP-5050-6100-65-80 MP-5050-6100-50-80 MP-5050-6100-40-80 MP-5050-6100-30-80 KW DPLS32.SB-6H6J-E5P7-EG-Z264 L1V1-507003V500000 KW CULPM1.TG-Z6RF7-ebvFfcbB46-65G5 KW DMLS33.SG-Z6M7-EBVFFCBB46-8E8G-700-S GW PSLT33.PM-LYL3-XX56-1-G3 ASMT-MW05-NMNS1 KW DPLS33.KD-HIJG-D30D144-HN-22C2-120-S KW DDLM31.EH-5J6K-A737-W4A4-140-R18 GW JTLRS1.CM-K1LW-XX57-1-100-Q-R33 KW DDLM31.EH-5J6K-A636-W4A4-140-R18 KW DDLM31.EH-5J6K-A131-W4A4-140-R18 GW PSLT33.PM-LYL3-XX57-1-G3 SML-LXL8047MWCTR/3 L2C5-40HG1203E0900 JB3030AWT-P-U27EA0000-N0000001 JK3030AWT-P-B40EB0000-N0000001 JK3030AWT-P-H30EB0000-N0000001 JK3030AWT-P-H40EB0000-N0000001 JK3030AWT-P-U27EB0000-N0000001 JK3030AWT-P-U30EA0000-N0000001 JK3030AWT-P-U30EA0000-N0000001 JK3030AWT-P-U30EB0000-N0000001 XPGBWT-HE-0000-00JE5 GW CSSRM2.PM-N3N5-XX53-1 GW P9LMS1.EM-NRNU-30S7-0-200-R18 GW PSLPS1.EC-KSKU-5R8T-1 LTPL-M03614ZS50-F1 LTW-2835SZK65 LTW-3030AQL40 LTW-3030AZL40-EU LTW-3030BSL42 LTW-3030DZL30 LTW-3030SZK40 LTW-3030SZK65