

APPROVAL SHEET

Approval Specification	Customer's Approval Certificate
то:	Please return this copy as a certification of your approval
Part No.:	Checked & Approved by:
Customer's Part No.:	Date:

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

Tel: +86-010-58937383 Fax: +86-010-58937263 E-mail: zxsf sales@163.com

QQ: 2109300457

Website: http://www.bjzxsf.net

Add: No 201, Block A. Building 3. Yongjie Beilu

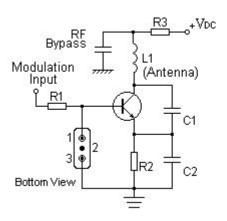
Yongfeng high-tech industrial base Haidian District Beijing city

Part No.	:	R315
Pages	:	6
Date	:	2013/3/28
Revision	:	1.0

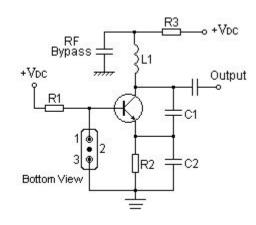
Prepared by:	= f3 R
Checked by:	杨香味
Approved by:	21/18/90

Features

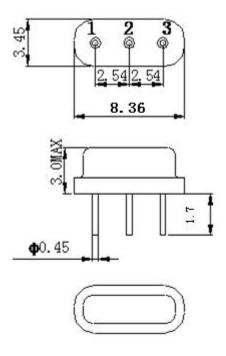
■ 1-port Resonator


SAW Resonator

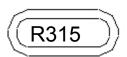
- Metal Case for **D11**
- Package size 8.36x3.45x1.70 mm³
- RoHS compatible
- Electrostatic Sensitive Device(ESD)



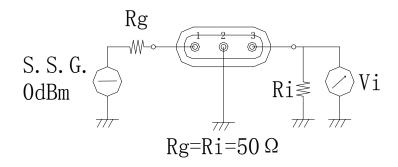
Application


Typical Low-Power Transmitter Application

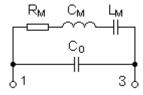
Typical Local Oscillator Application


Package Dimensions (D11)

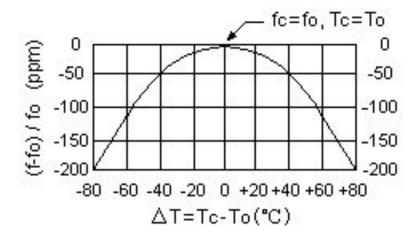
Pin Configuration


1	Input/output
3	Output/Input
2	Ground

Marking



R	SAW Resonator
315	Part number


Test Circuit

Equivalent LC Model

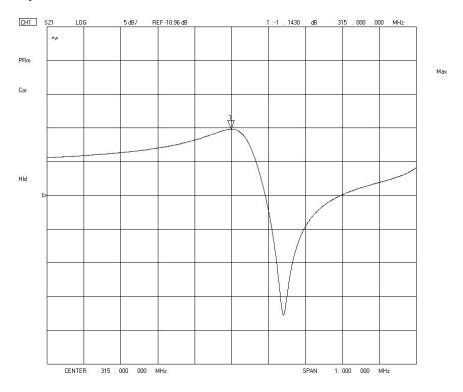
Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

Performance

Maximum Rating

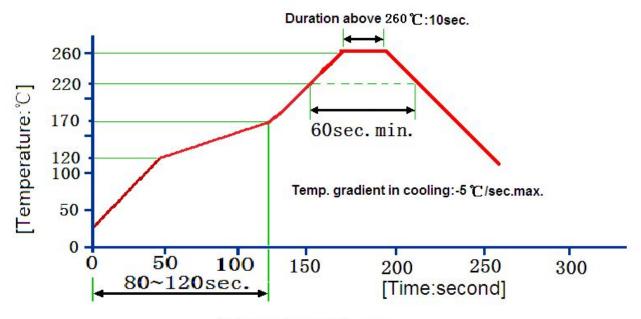
ltem		Value	Unit
DC Voltage	V _{DC}	± 30	V
Operation Temperature	Т	-40 ~ +85	${\mathbb C}$
Storage Temperature	T _{stg}	-55 ~ +125	${\mathbb C}$
RF Power Dissipation	Р	10	dBm


Electronic Characteristics

Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω Terminating load impedance: 50Ω

	Item		Minimum	Typical	Maximum	Ųnit
Center	Absolute Frequency	fc		315.00		MHz
Frequency	Tolerance from 315.00MHz	△fc		± 75		KHz
Insertion Loss(n	ion Loss(min) IL 1.2 1.8		1.8	dB		
Ovelity Factor	Unloaded Q	Qυ		16060		
Quality Factor	50Ω Loaded Q	QL		1844		
	Turnover Temperature	T ₀	10	25	40	$^{\circ}$ C
Temperature Stability	Turnover Frequency	f ₀		f _c		KHz
•	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging Absolute Value during the First Year		f _A		≤ 10		ppm/yr
DC Insulation R	esistance between Any Two Pins		1.0			MΩ
RF Equivalent	Motional Resistance	R _M		13	22	Ω
	Motional Inductance	L _M		105.3		μН
RLC Model	Motional Capacitance	См		2.43		fF
	Static Capacitance	C ₀	2.8	3.1	3.4	pF


Frequency Response

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition		
1	Temperature	(1) Temperature: 85°C±2°C, Duration: 250h, Recovery time: 2h±0.5h		
	Storage	(2) Temperature: –40 ℃±3 ℃ , Duration: 250h ,Recovery time: 2h±0.5h		
2	Humidity Test	Conditions: 60℃±2℃,90~95% RH		
3 Thermal Shock	Heat cycle conditions: TA=-40℃±3℃, TB=85℃±2℃, t1=t2=30min, Switch			
	time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.			
4 Vibration Fatigue		Frequency of vibration: 10~55Hz Amplitude:1.5mm		
	Directions: X,Y and Z Duration: 2h			
5	Drop Test	Cycle time: 10 times Height: 1.0m		
		Temperature: 245℃±5℃ Duration: 3.0s5.0s		
6	6 Solder Ability Test	Depth: DIP2/3 , SMD1/5		
		(1)Thickness of PCB:1mm , Solder condition: 260℃±5℃ , Duration: 10±1s		
7	Resistance to	(2)Temperature of Soldering Iron: 350℃±10℃, Duration: 3~4s,		
	Soldering Heat	Recovery time: 2 ± 0.5h		

Recommended Reflow Soldering Diagram

Reflow cycles:3 cycles max.

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may **be soldered**. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by Sf manufacturer:

Other Similar products are found below:

B39431R820H210 CSAC2.00MGCM-TC ECS-HFR-40.00-B-TR CSTLS4M00G53Z-A0 ZTB455E ECS-CR2-16.00-A-TR ECS-HFR-20.00-B-TR ECS-CR2-20.00-A-TR RO3164E-3 ASR418S2-T CSTNE10M0G520000R0 CSTLS8M00G53093-A0 CSTNE12M0G52A000R0 CSTLS18M4X54-A0 CSTLS16M9X53Z-B0 CSTLS24M0X51-A0 CSTLS25M0X51-B0 CSTLS18M0X51-B0 CSTLS4M00G53093-A0 CSTLS18M4X53-A0 CSTNE16M0V510000R0 CSTLS30M0X53-B0 CSTLS33M8X53-B0 CSTLS16M9X53-A0 CSTLS6M40G56-B0 CSTLS6M25G56-A0 CSTNE14M7V510000R0 CSTLS18M4X53-B0 CSTLS33M0X51-B0 CSTLS5M50G56-B0 7B008000101 7D038400101 TAXM24M2ILDBET2T TAXM26M2IHDBET2T 146-32.768-12.5-20-20/A 3225-24.00-12-10-10/A 7B009843M01 CF4016M00009T8188042 S32400001B0730D1JB X252016MLB4SI Q24FA20H00389 CSTLS16M0X54-B0 CSTLS4M19G56-B0 9AC04194152080D2JB CST3.58MGW CSTCR4M91G55B-R0 CSTLS3M68G56-B0 S2100327072090 FC-12M32.768KHZ9PF20PPM ASR315S2