

SHENZHEN HUAYUAN MICRO ELECTRONIC TECHNOLOGY CO., LTD.

Shenzhen Office:

TEL: 0755-29881155 FAX:0755-29881157 EMAIL:zxsf_sales@163.com QQ:2109300457 www.szhywd.com

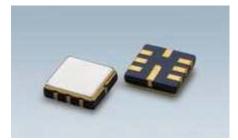
Approval Specification	Customer's Approval Certificate
то:	Please return this copy as a certification of your approval
Part No.:	Checked & Approved by:
Customer's Part No.:	Date:

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

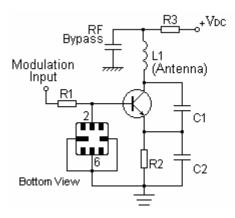
Fax: +86-010-58937263

- E-mail: zxsf_sales@163.com
- QQ: 2109300457
- Website: <u>http://www.bjzxsf.net</u>
- Add: No 201, Block A. Building 3. Yongjie Beilu Yongfeng high-tech industrial base Haidian District Beijing city

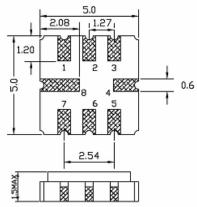
Part No.	:	SFR315A
Pages	:	6
Date	:	2013/3/21
Revision	:	1.0

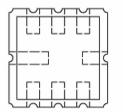

Prepared by:	
Checked by:	
Approved by:	

SAW Resonator

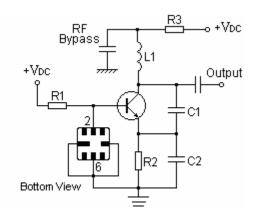

Features

- 1-port Resonator
- Ceramic Package for Surface Mounted Technology (SMT)
- RoHS compatible
- Package size 5.00x5.00x1.50mm³
- Package Code QCC8C
- Electrostatic Sensitive Device(ESD)




Application

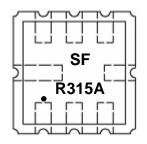
Typical Low-Power Transmitter Application


Package Dimensions (QCC8C)

Typical Local Oscillator Application

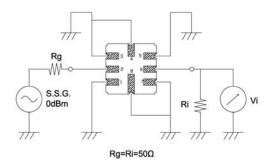
SFR315A

Pin Configuration

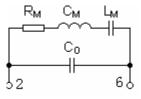

2	Input	
6	Output	
1,3,4,5,7,8	Ground	

Please read notes at the end of this document.

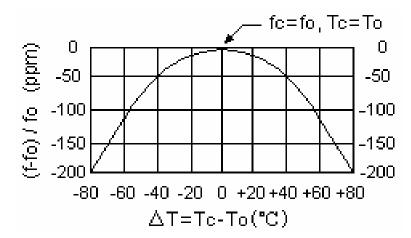
SAW Resonator


SFR315A

Marking



SF	Trademark	
R	SAW Resonator	
315A	Part number	


Test Circuit

Equivalent LC Model

Temperature Characteristics

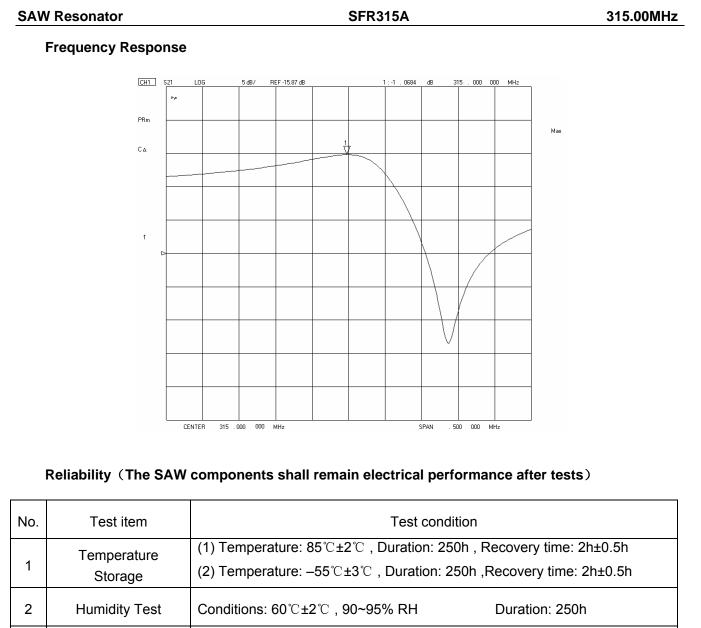
The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

SAW Resonator

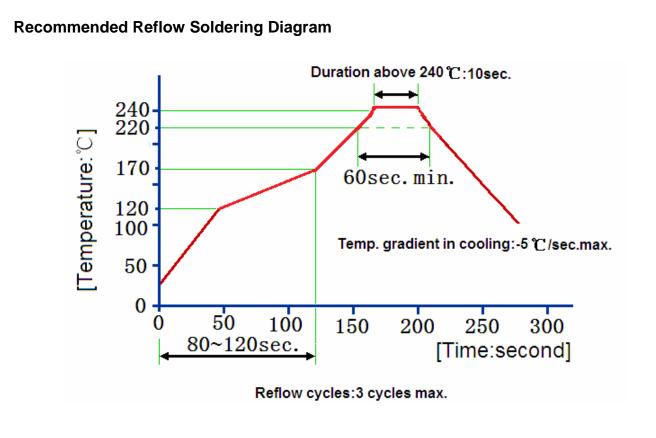
Performance

Maximum Rating

Item		Value	Unit
DC Voltage	V _{DC}	± 30	V
Operation Temperature	т	-40 ~ +85	°C
Storage Temperature	T _{stg}	-55 ~ +125	°C
RF Power Dissipation	Р	10	dBm


Electronic Characteristics

Test Temperature: 25℃±2℃


Terminating source impedance: 50Ω

Terminating load impedance: 50Ω

Item			Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	f _c		315.00		MHz
Frequency	Tolerance from 315.00MHz	∆f _c		± 75		KHz
Insertion Loss(r	nin)	IL		1.1	1.6	dB
Quality Eactor	Unloaded Q	QU		17824		
Quality Factor 50Ω Loaded Q		QL		1925		
	Turnover Temperature	T ₀	25	40	55	°C
Temperature Stability	Turnover Frequency	f ₀		f _c		
	Frequency Temperature Coefficient	FTC		0.032		ppm/° ℃
Frequency Aging Absolute Value during the First Year		f _A		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			MΩ
	Motional Resistance	R _M		13.0	20.0	Ω
RF Equivalent	Motional Inductance	L _M		109.1		μΗ
RLC Model	Motional Capacitance	См		2.34		fF
	Static Capacitance	C ₀	2.9	3.2	3.5	pF

No.	Test item	Test condition		
1	Temperature Storage	 (1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -55℃±3℃, Duration: 250h, Recovery time: 2h±0.5h 		
2	Humidity Test	Conditions: 60°C±2°C , 90~95% RH Duration: 250h		
3	Thermal Shock	Heat cycle conditions: TA=-40℃±3℃, TB=85℃±2℃, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.		
4	Vibration Fatigue	Frequency of vibration: 10~55HzAmplitude:1.5mmDirections: X,Y and ZDuration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
6	Solder Ability Test	Temperature: 245℃±5℃ Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5		
7	Resistance to Soldering Heat	 (1)Thickness of PCB:1mm , Solder condition: 260°C±5°C , Duration: 10±1s (2)Temperature of Soldering Iron: 350°C±10°C , Duration: 3~4s , Recovery time : 2 ± 0.5h 		

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may **be soldered**. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by Sf manufacturer:

Other Similar products are found below :

B39431R820H210 CSAC2.00MGCM-TC ECS-HFR-40.00-B-TR CSTLS4M00G53Z-A0 ZTB455E ECS-CR2-16.00-A-TR ECS-HFR-20.00-B-TR ECS-CR2-20.00-A-TR RO3164E-3 ASR418S2-T CSTNE10M0G520000R0 CSTLS8M00G53093-A0 CSTNE12M0G52A000R0 CSTLS18M4X54-A0 CSTLS16M9X53Z-B0 CSTLS24M0X51-A0 CSTLS25M0X51-B0 CSTLS18M0X51-B0 CSTLS4M00G53093-A0 CSTLS18M4X53-A0 CSTNE16M0V510000R0 CSTLS30M0X53-B0 CSTLS33M8X53-B0 CSTLS16M9X53-A0 CSTLS6M40G56-B0 CSTLS6M25G56-A0 CSTNE16M0V510000R0 CSTLS18M4X53-B0 CSTLS33M0X51-B0 CSTLS16M9X53-A0 CSTLS6M40G56-B0 CSTLS6M25G56-A0 CSTNE14M7V510000R0 CSTLS18M4X53-B0 CSTLS33M0X51-B0 CSTLS5M50G56-B0 7B008000I01 7D038400I01 TAXM24M2ILDBET2T TAXM26M2IHDBET2T 146-32.768-12.5-20-20/A 3225-24.00-12-10-10/A 7B009843M01 CF4016M00009T8188042 S32400001B0730D1JB X252016MLB4SI Q24FA20H00389 CSTLS16M0X54-B0 CSTLS4M19G56-B0 9AC04194152080D2JB CST3.58MGW CSTCR4M91G55B-R0 CSTLS3M68G56-B0 S2100327072090 FC-12M32.768KHZ9PF20PPM ASR315S2