0.6Ω Ultra Low On-Resistance, Negative Signal Passing, Dual SPDT Analog Switch

GENERAL DESCRIPTION

The SGM3718 is a negative signal passing dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single +2.5 V to +5 V power supply. Targeted applications include battery powered equipment that benefit from SGM3718's ultra low on-resistance (0.6Ω) and fast switching speeds ($\mathrm{t}_{\mathrm{ON}}=17 \mathrm{~ns}$, $t_{\text {OFF }}=24 \mathrm{~ns}$).

The SGM3718 has excellent on-resistance matching (0.22Ω MAX) between switches and guarantees excellent on-resistance flatness over all signal range ($0.22 \Omega \mathrm{MAX}$). This ensures excellent linearity and low distortion when switching audio signals.

The SGM3718 is a committed dual single-pole/doublethrow (SPDT) that consist of two normally open (NO) and two normally closed (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

The SGM3718 can pass -2 V ground referenced signal with very low distortion.

The SGM3718 is available in Green TQFN-1.8×1.4-10L package. It operates over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FEATURES

- Supply Voltage Range: 2.5V to 5 V
- Ultra Low On-Resistance: 0.6Ω (TYP) at 4.5V
- -2V Low Distortion Negative Signal Passing
- Fast Switching Times
$t_{\text {ON }}=17 \mathrm{~ns}$ (TYP)
$t_{\text {OFF }}=24 n s$ (TYP)
- High Off-Isolation: -57 dB at 1 MHz
- Low Crosstalk: -61dB at 1 MHz
- Rail-to-Rail Input and Output Operation
- 1.8V Logic Compatible Control Pin
- Break-Before-Make Switching
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Available in Green TQFN-1.8×1.4-10L Package

APPLICATIONS

Portable Instrumentation
Battery-Operated Equipment

0.6』 Ultra Low On-Resistance Negative Signal Passing, Dual SPDT Analog Switch

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM3718	TQFN-1.8 $\times 1.4-10 \mathrm{~L}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SGM 3718 YUWQ10G/TR	TBXX	Tape and Reel, 3000

NOTE: XX = Date Code.
Green (RoHS \& HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

MARKING INFORMATION

For example: TBDJ (2013, October)

ABSOLUTE MAXIMUM RATINGS

NOTE: 1. Signals on NC, NO, or COM or IN exceeding V_{+}will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

RECOMMENDED OPERATING CONDITIONS
Supply Voltage Range .. 2.5 V to 5 V
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

0.6』 Ultra Low On-Resistance Negative Signal Passing, Dual SPDT Analog Switch

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	V $_{+}$	Power Supply.
2,10	NO1, NO2	Normally-Open Terminal.
3,9	COM1, COM2	Common Terminal.
4,8	IN1, IN2	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminals.
5,7	NC1, NC2	Normally-Closed Terminal.
6	GND	Ground.

NOTE: NO, NC and COM terminals may be an input or output.

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

Switches Shown for Logic "0" Input.

0.6』 Ultra Low On-Resistance Negative Signal Passing, Dual SPDT Analog Switch

SGM3718

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+4.5 \mathrm{~V}\right.$ to +5.0 V , Full $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{+}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$	$2.5 \mathrm{~V} \leq \mathrm{V}_{+} \leq 3.5 \mathrm{~V}$	Full	-2		V_{+}	V
		$3.5 \mathrm{~V} \leq \mathrm{V}_{+} \leq 5.0 \mathrm{~V}$		$\left(\mathrm{V}_{+}\right)-5.5$		V_{+}	
On-Resistance	Ron	$\mathrm{V}_{+}=4.5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}$, $\mathrm{I}_{\text {сом }}=-100 \mathrm{~mA}$, Test Circuit 1	$+25^{\circ} \mathrm{C}$		0.6	0.85	Ω
			Full			1	
On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+} \text {, } \\ & \mathrm{I}_{\text {com }}=-100 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.15	0.22	Ω
			Full			0.26	
On-Resistance Flatness	$\mathrm{R}_{\text {flat(on) }}$	$\mathrm{V}_{+}=4.5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+} \text {, }$$I_{\text {сом }}=-100 \mathrm{~mA} \text {, Test Circuit } 1$	$+25^{\circ} \mathrm{C}$		0.15	0.22	Ω
			Full			0.26	
Source OFF Leakage Current	$I_{\text {NC(OFF) }}$ $\mathrm{I}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{+}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, 1.0 \mathrm{~V} \end{aligned}$	Full			1	$\mu \mathrm{A}$
Channel ON Leakage Current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON}),} \mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$, Ісом(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V}, 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, 4.5 \mathrm{~V} \text {, or floating } \end{aligned}$	Full			1.5	$\mu \mathrm{A}$

DIGITAL INPUTS

Input High Voltage	$\mathrm{V}_{\mathrm{INH}}$		Full	1.5			V
Input Low Voltage	$\mathrm{V}_{\mathrm{INL}}$		Full			0.6	V
Input Leakage Current	I_{IN}	$\mathrm{V}_{+}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5.0 V	Full			1	$\mu \mathrm{~A}$

DYNAMIC CHARACTERISTICS

Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$, $R_{L}=50 \Omega, C_{L}=35 p F$, Test Circuit 2		$+25^{\circ} \mathrm{C}$	17		ns
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$, $R_{L}=50 \Omega, C_{L}=35 p F$, Test Circuit 2		$+25^{\circ} \mathrm{C}$	24		ns
Break-Before-Make Time Delay	$t_{\text {D }}$	$\mathrm{V}_{\mathrm{NO} 1}$ or $\mathrm{V}_{\mathrm{NC} 1}=\mathrm{V}_{\mathrm{NO} 2}$ or $\mathrm{V}_{\mathrm{NC} 2}=3 \mathrm{~V}$, $R_{L}=50 \Omega, C_{L}=35 p F$, Test Circuit 3		$+25^{\circ} \mathrm{C}$	32		ns
Off Isolation	OIso	$\begin{aligned} & R_{L}=50 \Omega, \text { Signal }=0 \mathrm{dBm}, \\ & C_{L}=5 \mathrm{pF}, \text { Test Circuit } 4 \end{aligned}$	$f=100 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-77		dB
			$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-57		dB
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$	$R_{L}=50 \Omega, C_{L}=5 p F,$ Test Circuit 5	$\mathrm{f}=100 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-81		dB
			$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-61		dB
-3dB Bandwidth	BW	$\text { Signal }=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, }$ Test Circuit 6		$+25^{\circ} \mathrm{C}$	80		MHz
Channel ON Capacitance	Con	$\mathrm{f}=1 \mathrm{MHz}$		$+25^{\circ} \mathrm{C}$	88		pF
Charge Injection Select Input to Common I/O	Q	$\mathrm{V}_{\mathrm{G}}=\mathrm{GND}, \mathrm{R}_{\mathrm{G}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ Test Circuit 7		$+25^{\circ} \mathrm{C}$	85		pC
POWER REQUIREMENTS							
Power Supply Current	I_{+}	$\mathrm{V}_{+}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 5.0 V		Full		3.5	$\mu \mathrm{A}$

0.6 Ultra Low On-Resistance Negative Signal Passing, Dual SPDT Analog Switch

SGM3718

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+2.7 \mathrm{~V}\right.$ to +3.6 V , Full $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{NO},}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$	$2.5 \mathrm{~V} \leq \mathrm{V}_{+} \leq 3.5 \mathrm{~V}$	Full	-2		V_{+}	V
		$3.5 \mathrm{~V} \leq \mathrm{V}_{+} \leq 5.0 \mathrm{~V}$		(V_{+}) - 5.5		V_{+}	
On-Resistance	Ron	$\mathrm{V}_{+}=2.7 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+} \text {, }$ $\mathrm{I}_{\text {сом }}=-100 \mathrm{~mA}$, Test Circuit 1	$+25^{\circ} \mathrm{C}$		1	1.3	Ω
			Full			1.4	
On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{Com}}=-100 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.15	0.25	Ω
			Full			0.3	
On-Resistance Flatness	$\mathrm{R}_{\text {flat(on) }}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\text {com }}=-100 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.4	0.55	Ω
			Full			0.6	
Source OFF Leakage Current	$I_{\text {NC(OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\text { OFF })}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	Full			1	$\mu \mathrm{A}$
Channel ON Leakage Current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON}),} \mathrm{I}_{\mathrm{NO}(\mathrm{ON}),}$ ІCOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {com }}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, or floating } \end{aligned}$	Full			1.5	$\mu \mathrm{A}$

DIGITAL INPUTS

Input High Voltage	$\mathrm{V}_{\mathrm{INH}}$		Full	1.3			V
Input Low Voltage	$\mathrm{V}_{\mathrm{INL}}$		Full			0.4	V
Input Leakage Current	I_{IN}	$\mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$ or 3.6 V	Full			1	$\mu \mathrm{~A}$

DYNAMIC CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{+}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

Test Circuit 1. On Resistance

Test Circuit 2. Switching Times (ton, toff)

Test Circuit 3. Break-Before-Make Time Delay (t_{D})

TEST CIRCUITS

Test Circuit 4. Off Isolation

Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS

Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)

Test Circuit 8. Total Harmonic Distortion (THD)

0.6 Ultra Low On-Resistance Negative Signal Passing, Dual SPDT Analog Switch

APPLICATION

In order to enhance the negative signal swing capability of SGM3718, the circuit in Figure 1 is recommended. R1 and R 4 will prevent the device from entering into latch-up state when passing negative signal.

Figure 1. Typical Application Circuit

PACKAGE OUTLINE DIMENSIONS

TQFN-1.8×1.4-10L

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.
KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width $\mathbf{W 1}$ $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	$\mathbf{P 0}$ $(\mathbf{m m})$	P1 $(\mathbf{m m})$	$\mathbf{P 2}$ $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
TQFN-1.8×1.4-10L	$7^{\prime \prime}$	9.0	1.75	2.10	1.00	4.00	4.00	2.00	8.00	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7 " (Option)	368	227	224	8
$7^{\prime \prime}$	442	410	224	18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by SGMICRO manufacturer:
Other Similar products are found below :
74HC85N NL17SG32DFT2G CD4068BE NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 74LVC32ADTR2G CD4025BE MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NLV7SZ97DFT2G NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G

