Voltage Output, High or Low Side Measurement, Bi-Directional Current Shunt Monitor #### GENERAL DESCRIPTION The SGM8199 series are voltage output current shunt monitors which can sense drop across shunt at common mode voltages from -0.1V to 26V, independent of the supply voltage. Three fixed gains are available: 20V/V, 50V/V and 100V/V. The low offset enables current sensing with maximum drops across the shunt as low as 10mV full-scale. These devices operate from a single 2.7V to 26V power supply, drawing a typical 85µA of supply current. The SGM8199 series are available in Green SC70-6 package. They are specified over the extended -40°C to +125°C temperature range. #### **APPLICATIONS** Notebook Computers Cell Phones Telecom Equipment Power Managements Battery Chargers Welding Equipment #### **FEATURES** - Wide Common Mode Range: -0.1V to 26V - Input Offset Voltage SGM8199A0: $600\mu V (V_{CM} = 12V, MAX)$ SGM8199A1: $350\mu V (V_{CM} = 12V, MAX)$ SGM8199A2: $250\mu V (V_{CM} = 12V, MAX)$ (Enables Shunt Drops of 10mV Full-Scale) • Gain Error (Maximum Over Temperature) SGM8199A0: ±0.7% SGM8199A1: ±0.4% SGM8199A2: ±0.4% • Choice of Gains: SGM8199A0 Gain: 20V/V SGM8199A1 Gain: 50V/V SGM8199A2 Gain: 100V/V • Quiescent Current: 85µA (TYP) • -40°C to +125°C Operating Temperature Range • Available in Green SC70-6 Package #### TYPICAL APPLICATION **Figure 1. Typical Application Circuit** #### PACKAGE/ORDERING INFORMATION | MODEL | PACKAGE
DESCRIPTION | GAIN | SPECIFIED
TEMPERATURE
RANGE | ORDERING
NUMBER | PACKAGE
MARKING | PACKING
OPTION | |-----------|------------------------|--------|-----------------------------------|--------------------|--------------------|---------------------| | SGM8199A0 | SC70-6 | 20V/V | -40°C to +125°C | SGM8199A0XC6G/TR | M91XX | Tape and Reel, 3000 | | SGM8199A1 | SC70-6 | 50V/V | -40°C to +125°C | SGM8199A1XC6G/TR | GS2XX | Tape and Reel, 3000 | | SGM8199A2 | SC70-6 | 100V/V | -40°C to +125°C | SGM8199A2XC6G/TR | M93XX | Tape and Reel, 3000 | #### **MARKING INFORMATION** NOTE: XX = Date Code. SC70-6 Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly. #### **ABSOLUTE MAXIMUM RATINGS** | Supply Voltage | 28V | |-----------------------------------|-------------------| | V _{IN} Differential | ±28V | | Input Common Mode Voltage Range | GND - 0.3V to 28V | | Input Current into All Pins | 5mA | | Junction Temperature | +150°C | | Storage Temperature Range | 65°C to +150°C | | Lead Temperature (Soldering, 10s) | +260°C | | ESD Susceptibility | | | HBM | 3000V | | MM | 200V | | CDM | 2000V | #### RECOMMENDED OPERATING CONDITIONS Operating Temperature Range-40°C to +125°C #### PIN CONFIGURATION #### **OVERSTRESS CAUTION** Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied. #### **ESD SENSITIVITY CAUTION** This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### **DISCLAIMER** SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice. ## **ELECTRICAL CHARACTERISTICS** (At T_A = +25°C, Full = -40°C to +125°C, V_{CC} = 2.7V to 26V, V_{IN+} = 12V, V_{SENSE} = V_{IN+} - V_{IN-} , and V_{REF} = $V_{CC}/2$, unless otherwise noted.) | PARAMETER | CONDITIONS | | TEMP | MIN | TYP | MAX | UNITS | |---|--|-------------------------|---|---|---|------|--------| | INPUT CHARACTERISTICS | | | | | | | | | | V _{CM} = -0.1V to 2V, V _{SENSE} = 0mV | 0014040040 | | | 270 | 1420 | | | | V _{CM} = 2V to 26V, V _{SENSE} = 0mV | | | | 260 | 600 | | | | V_{CM} = -0.1V to 2V, V_{SENSE} = 0mV | 0.014040044 | | | 150 | 720 | ., | | Input Offset Voltage, RTI ⁽¹⁾ (V _{os}) | V _{CM} = 2V to 26V, V _{SENSE} = 0mV | | +25°C | | 150 | 350 | μV | | | V _{CM} = -0.1V to 2V, V _{SENSE} = 0mV | 0014040040 | | | 80 | 750 | | | | V _{CM} = 2V to 26V, V _{SENSE} = 0mV | | | | 80 | 250 | | | Input Offset Voltage Drift (ΔV _{OS} /ΔT) | | | Full | | 1 | | μV/°C | | | | SGM8199A0 | | | 30 | | | | Input Bias Current (I _B) | V _{SENSE} = 0mV | SGM8199A1/
SGM8199A2 | +25°C | 16 | | μΑ | | | | | SGM8199A0 | | | 35 | | | | Input Offset Current (I _{OS}) | V _{SENSE} = 0mV | SGM8199A1/
SGM8199A2 | +25°C Full +25°C Full Full +25°C Full Full +25°C Full Full +25°C | | 25 | | nA | | Input Common Mode Voltage Range (V _{CM}) | | | Full | -0.1 | | 26 | V | | | V _{CM} = -0.1V to 26V, V _{SENSE} = 0mV | CCM0400A0 | | 85 | 97
93
104 | | | | | V _{CM} = 2V to 26V, V _{SENSE} = 0mV | | | 81 | 93 | | dB | | Occurred Made Delication Defic (OMDD) | V _{CM} = -0.1V to 26V, V _{SENSE} = 0mV | 0004040044 | F | 85 | 260
150
150
80
80
1
30
16
35
25
97 | | | | Common Mode Rejection Ratio (CMRR) | V _{CM} = 2V to 26V, V _{SENSE} = 0mV | | Full 8 | 87 | 100 | | | | | V _{CM} = -0.1V to 26V, V _{SENSE} = 0mV | CCM0400A2 | | 90 | 108 | | | | | V _{CM} = 2V to 26V, V _{SENSE} = 0mV | SGM8199A2 | | 91 | 106 | | | | OUTPUT CHARACTERISTICS | | | | | • | • | | | | | SGM8199A0 | | | 20 | | | | Gain (G) | | SGM8199A1 | +25°C | | 50 | | V/V | | | | SGM8199A2 | | C C C S S S S S S S S S S S S S S S S S | 100 | | | | | | SGM8199A0 | | | 0.20 | 0.7 | | | Gain Error | V _{SENSE} = -5mV to 5mV | SGM8199A1 | Full | | 0.02 | 0.4 | % | | | | SGM8199A2 | | | 270
260
150
150
80
80
80
1
30
16
35
25
97
93
104
100
108
106
20
50
100
0.20
0.02
0.05
10
140 | 0.4 | | | Gain Temperature Coefficient | | | Full | | 10 | | ppm/°C | | Nonlinearity Error | V _{SENSE} = -5mV to 5mV | | +25°C | | 0.01 | | % | | Maximum Capacitive Load | No sustained oscillation | | +25°C | | 1 | | nF | | Output Voltage Swing from Rail | V = 20V B = 40V0 to V /2 | | Eull | | 140 | 380 | mV | | V _{OL} | $V_{CC} = 26V$, $R_L = 10k\Omega$ to $V_{CC}/2$ | | Full | | 85 | 300 | IIIV | NOTE: 1. RTI = Referred-to-input. # **ELECTRICAL CHARACTERISTICS (continued)** (At T_A = +25°C, Full = -40°C to +125°C, V_{CC} = 2.7V to 26V, V_{IN+} = 12V, V_{SENSE} = V_{IN+} - V_{IN-} , and V_{REF} = $V_{CC}/2$, unless otherwise noted.) | PARAMETER | CONDITIONS | | TEMP | MIN | TYP | MAX | UNITS | |--|---|-------------------------|-------|------|------|----------|--------| | DYNAMIC PERFORMANCE | | | | | | | | | | | SGM8199A0 | | | 74 | | | | -3dB Bandwidth | V_{CC} = 5V, R_L = 10k Ω , C_L = 10pF | SGM8199A1 | +25°C | | 80 | | kHz | | | | SGM8199A2 | | 25°C | 68 | | | | | $f = 1kHz$, $R_L = 10k\Omega$, $V_{OUT} = 1V_{P-P}$ | SGM8199A0 | | | 0.42 | | | | | $f = 1kHz$, $R_L = 10k\Omega$, $V_{OUT} = 2V_{P-P}$ | SGIVIO 199AU | +25°C | 0.42 | | <u> </u> | | | Class Bata (CD) | $f = 1kHz$, $R_L = 10k\Omega$, $V_{OUT} = 1V_{P-P}$ | CCM0400A4 | .0500 | C | 0.15 | | \// | | Slew Rate (SR) | $f = 1kHz$, $R_L = 10k\Omega$, $V_{OUT} = 2V_{P-P}$ | SGM8199A1 | +25°C | | 0.35 | | - V/μs | | | $f = 1kHz$, $R_L = 10k\Omega$, $V_{OUT} = 1V_{P-P}$ | CCM0400A2 | | | 0.12 | | | | | $f = 1kHz$, $R_L = 10k\Omega$, $V_{OUT} = 2V_{P-P}$ | SGM8199A2 | | | 0.3 | | | | NOISE, RTI (1) | · | | | | • | | | | | | SGM8199A0 | | | 48 | | | | Voltage Noise Density (e _n) | f = 1kHz | SGM8199A1 | +25°C | | 50 | | nV/√Hz | | | | SGM8199A2 | | | 35 | | | | POWER SUPPLY | · | | | | • | | | | Operating Voltage Range (V _{CC}) | | | Full | 2.7 | | 26 | V | | Outro and Outro 4(1) | V 00V V 00VV | | +25°C | | 85 | 120 | | | Quiescent Current (IQ) | $V_{CC} = 26V, V_{SENSE} = 0mV$ | | Full | | | 130 | μA | | | | SGM8199A0 | | | 100 | | | | Power Supply Rejection Ratio (PSRR) | V _{CC} = 2.7V to 26V, V _{SENSE} = 0mV | SGM8199A1/
SGM8199A2 | +25°C | | 105 | | dB | NOTE: 1. RTI = Referred-to-input. # TYPICAL PERFORMANCE CHARACTERISTICS # **TYPICAL PERFORMANCE CHARACTERISTICS (continued)** # **TYPICAL PERFORMANCE CHARACTERISTICS (continued)** # **TYPICAL PERFORMANCE CHARACTERISTICS (continued)** ### **APPLICATION INFORMATION** #### **Basic Connection** Figure 1 shows the basic connection for the SGM8199. The input pins, IN+ and IN-, should be connected as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistance. Power supply bypass capacitors are required for stability. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power supply noise. Connect bypass capacitors close to the device pins. #### **Power Supply** The input circuitry of the SGM8199 can accurately measure beyond its power supply voltage, V_{CC} . For example, the V_{CC} power supply can be 5V, whereas the load power supply voltage can be as high as 26V. However, the output voltage range of the OUT terminal is limited by the voltages on the power supply pin. Note also that the SGM8199 can withstand the full -0.1V to 26V range in the input pins, regardless of whether the device has power applied or not. #### Selecting R_{SHUNT} The SGM8199 series of current-shunt monitors give high accuracy at a full-scale range on the order of 10mV. This accuracy reduces shunt dissipation by an order of magnitude with many additional benefits. Alternatively, there are applications that must measure current over a wide dynamic range that can take advantage of the low offset on the low end of the measurement. Most often, these applications can use gain of 20, 50 or 100 to accommodate larger shunt drops on the upper end of the scale. For instance, an SGM8199A1 operating on a 3.3V supply could easily handle a full-scale shunt drop of 60mV, with only $350\mu V$ of offset. #### **Unidirectional Operation** Unidirectional operation allows the SGM8199 to measure currents through a resistive shunt in one direction. The most frequent case of unidirectional operation sets the output at ground by connecting the REF pin to ground. In unidirectional applications where the highest possible accuracy is desirable at very low inputs, bias the REF pin to a convenient value above 300mV to get the device output swing into the linear range for zero inputs. A less frequent case of unipolar output biasing is to bias the output by connecting the REF pin to the supply; in this case, the quiescent output for zero input is at quiescent supply. This configuration would only respond to negative currents (inverted voltage polarity at the device input). #### **Bi-Directional Operation** Bi-directional operation allows the SGM8199 to measure currents through a resistive shunt in two directions. In this case, the output can be set anywhere within the limits of what the reference inputs allow (that is, between 0V to $V_{\rm CC}$). Typically, it is set at half-scale for equal range in both directions. In some cases, however, it is set at a voltage other than half-scale when the bi-directional current is nonsymmetrical. The quiescent output voltage is set by applying voltage to the reference input. Under zero differential input conditions the output assumes the same voltage that is applied to the reference input. #### Input Filtering An obvious and straightforward filtering location is at the device output. However, this location negates the advantage of the low output impedance of the internal buffer. The only other filtering option is at the device input pins. Figure 2 shows a filter placed at the inputs pins. ## **APPLICATION INFORMATION (continued)** The addition of external series resistance, however. creates an additional error in the measurement so the value of these series resistors should be kept to 10Ω or less if possible to reduce impact to accuracy. The internal bias network shown in Figure 2 present at the input pins creates a mismatch in input bias currents when a differential voltage is applied between the input pins. If additional external series filter resistors are added to the circuit, the mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This mismatch creates a differential error voltage that subtracts from the voltage developed at the shunt resistor. This error results in a voltage at the device input pins that is different than the voltage developed across the shunt resistor. Without the additional series resistance, the mismatch in input bias currents has little effect on device operation. Figure 2. Filter at Input Pins #### **Shutting Down the SGM8199 Series** While the SGM8199 series do not have a shutdown pin, the low power consumption allows powering from the output of a logic gate or transistor switch that can turn on and turn off the SGM8199 power supply quiescent current. However, in current shunt monitoring applications, there is also a concern for how much current is drained from the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the simplified schematic of the SGM8199 in shutdown mode shown in Figure 3. NOTE: 400k $\!\Omega$ or 1M $\!\Omega$ path from shunt inputs to reference and SGM8199 outputs. Figure 3. Basic Circuit for Shutting Down SGM8199 with Grounded Reference ## **APPLICATION INFORMATION (continued)** #### **REF Input Impedance Effects** As with any difference amplifier, the SGM8199 series common mode rejection ratio is affected by any impedance present at the REF input. This concern is not a problem when the REF pin is connected directly to most references or power supplies. When using resistive dividers from the power supply or a reference voltage, the REF pin should be buffered by an operational amplifier. In systems where the SGM8199 output can be sensed differentially, such as by a differential input analog-to-digital converter (ADC) or by using two separate ADC inputs, the effects of external impedance on the REF input can be cancelled. Figure 4 depicts a method of taking the output from the SGM8199 by using the REF pin as a reference. Figure 4. Sensing SGM8199 to Cancel Effects of Impedance on the REF Input # Using the SGM8199 with Common Mode Transients above 26V With a small amount of additional circuitry, the SGM8199 series can be used in circuits subject to transients higher than 26V, such as automotive applications. Use only Zener diode or Zener-type transient absorbers (sometimes referred to as Transzorbs); any other type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as shown in Figure 5 as working impedance for the Zener. It is desirable to keep these resistors as small as possible, most often around 10Ω . Larger values can be used with an effect on gain that is discussed in the section on input filtering. Because this circuit limits only short-term transients, many applications are satisfied with a 10Ω resistor along with conventional Zener diodes of the lowest power rating that can be found. This combination uses the least amount of board space. Figure 5. SGM8199 Transient Protection Using Dual Zener Diodes In the event that low-power Zeners do not have sufficient transient absorption capability and a higher power Transzorb must be used, the most package -efficient solution then involves using a single Transzorb and back-to-back diodes between the device inputs. This method is shown in Figure 6. In both examples shown in Figure 5 and Figure 6, the total board area required by the SGM8199 with all protective components is less than that of an SOIC-8 package, and only slightly greater than that of an MSOP-8 package. Figure 6. SGM8199 Transient Protection Using a Single Transzorb and Input Clamps # Voltage Output, High or Low Side Measurement, Bi-Directional Current Shunt Monitor # **SGM8199** ## **REVISION HISTORY** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Original (SEPTEMBER 2018) to REV.A # PACKAGE OUTLINE DIMENSIONS SC70-6 RECOMMENDED LAND PATTERN (Unit: mm) | Symbol | | nsions
meters | Dimensions
In Inches | | | |--------|-------|------------------|-------------------------|-------|--| | | MIN | MAX | MIN | MAX | | | Α | 0.900 | 1.100 | 0.035 | 0.043 | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | A2 | 0.900 | 1.000 | 0.035 | 0.039 | | | b | 0.150 | 0.350 | 0.006 | 0.014 | | | С | 0.080 | 0.150 | 0.003 | 0.006 | | | D | 2.000 | 2.200 | 0.079 | 0.087 | | | E | 1.150 | 1.350 | 0.045 | 0.053 | | | E1 | 2.150 | 2.450 | 0.085 | 0.096 | | | е | 0.65 | TYP | 0.026 TYP | | | | e1 | 1.300 | BSC | 0.051 BSC | | | | L | 0.525 | REF | 0.021 | REF | | | L1 | 0.260 | 0.460 | 0.010 | 0.018 | | | θ | 0° | 8° | 0° | 8° | | # TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. #### **KEY PARAMETER LIST OF TAPE AND REEL** | Packa | ge Type | Reel
Diameter | Reel Width
W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | P1
(mm) | P2
(mm) | W
(mm) | Pin1
Quadrant | |-------|---------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------| | sc | 70-6 | 7" | 9.5 | 2.40 | 2.50 | 1.20 | 4.0 | 4.0 | 2.0 | 8.0 | Q3 | #### **CARTON BOX DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. #### **KEY PARAMETER LIST OF CARTON BOX** | Reel Type | Length
(mm) | Width
(mm) | Height
(mm) | Pizza/Carton | |-------------|----------------|---------------|----------------|--------------| | 7" (Option) | 368 | 227 | 224 | 8 | | 7" | 442 | 410 | 224 | 18 | # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Power Management Specialised - PMIC category: Click to view products by SGMICRO manufacturer: Other Similar products are found below: P9145-I0NQGI SLG7NT4192VTR AS3729B-BWLM TLE92623QXV33XUMA1 LNBH25SPQR ADP5080ACBZ-1-RL MC32PF3000A6EP MB39C831QN-G-EFE2 MAX9959DCCQ+D MAX1932ETC+T MAX1856EUB+T STNRG011TR IRPS5401MXI03TRP S6AE102A0DGN1B200 MMPF0100FDAEP MCZ33903DS5EK S6AE101A0DGNAB200 MCZ33903DS3EK NCP6924CFCHT1G MAX17117ETJ+ L9916 L9915-CB MCZ33904D5EK MCZ33905DS3EK MMPF0100FCANES MCZ33905DD3EK MMPF0100FBANES WM8325GEFL/V MCZ33903DP5EK MCZ33905DS5EK MCZ33903D3EK MCZ33903D5EK ADN8835ACPZ-R7 MCZ33903DP5EKR2 MCZ33903D5EK MCZ33903DD3EK MMPF0100FAAZES SLG7NT4198V MIC5164YMM P9180-00NHGI NCP6914AFCAT1G TLE9261QX TEA1998TS/1H MAX881REUB+T TLE9262QX TLE8880TN MAX8520ETP+T SLG7NT4083V ADP1031ACPZ-1-R7 ADP1031ACPZ-2-R7