

SGM8634 470µA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifier

PRODUCT DESCRIPTION

The quad SGM8634 is a low noise, low voltage, and low power operational amplifier that can be designed into a wide range of applications. The SGM8634 has a high gain-bandwidth product of 6MHz, a slew rate of $3.7V/\mu s$, and a quiescent current of $470\mu A/amplifier$ at 5V.

The SGM8634 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV. The operating range is from 2.5V to 5.5V.

The quad SGM8634 is available in Green TSSOP-14 and SOIC-14 packages. It is specified over the extended industrial temperature range (-40°C to +125°C).

FEATURES

- Rail-to-Rail Input and Output
 0.8mV Typical Vos
- High Gain-Bandwidth Product: 6MHz
- High Slew Rate: 3.7V/µs
- Settling Time to 0.1% with 2V Step: 2.1µs
- Overload Recovery Time: 0.9µs
- Low Noise: 12nV/√Hz
- Supply Voltage Range: 2.5V to 5.5V
- Input Voltage Range: -0.1V to +5.6V with V_s = 5.5V
- Low Supply Current 470µA/Amplifier (TYP)
- Available in Green TSSOP-14 and SOIC-14 Packages

APPLICATIONS

Sensors

Audio

Active Filters

A/D Converters

Communications

Test Equipment

Cellular and Cordless Phones

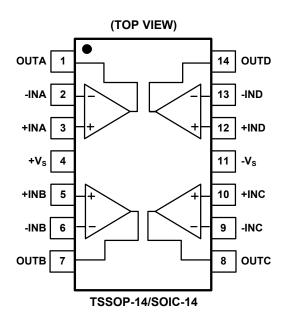
Laptops and PDAs

Photodiode Amplification

Battery-Powered Instrumentation

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8634	TSSOP-14	-40°C to +125°C	SGM8634XTS14/TR	SGM8634 XTS14 XXXXX	Tape and Reel, 3000
	SOIC-14	-40°C to +125°C	SGM8634XS14/TR	SGM8634XS14 XXXXX	Tape and Reel, 2500


NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Ran	ge
($-V_S$) - 0.3V to (+V _S) + 0.3V
Storage Temperature Range	65°C to +150°C
Junction Temperature	160°C
Operating Temperature Range	40°C to +125°C
Lead Temperature (Soldering 10se	ec)260°C
ESD Susceptibility	
HBM	1500V
MM	400V

PIN CONFIGURATION

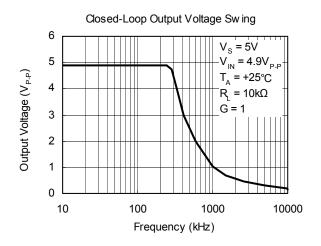
OVERSTRESS CAUTION

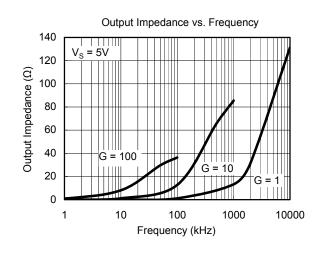
Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

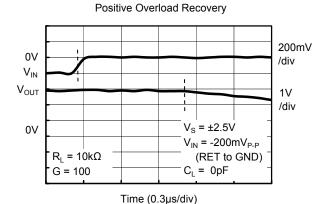
ESD SENSITIVITY CAUTION

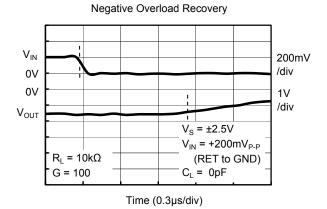
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

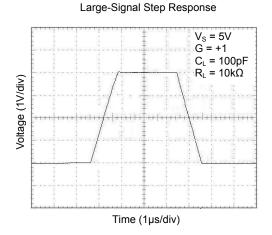
DISCLAIMER

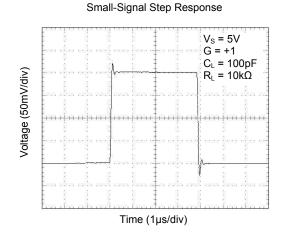

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

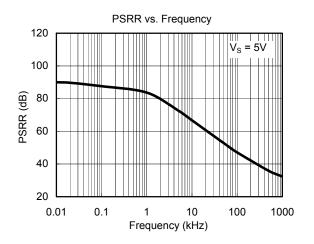

ELECTRICAL CHARACTERISTICS

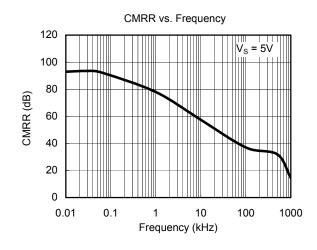

(At $T_A = +25$ °C, $V_S = 5V$, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.)

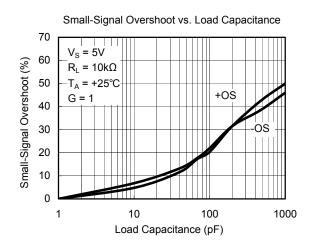

			SGM8634							
		TYP	MIN/MAX OVER TEMPERATURE							
PARAMETER	CONDITIONS	+25℃	+25℃	0°C to 70°C	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX		
INPUT CHARACTERISTICS										
Input Offset Voltage (Vos)		0.8	3.5	3.9	4.3	4.6	mV	MAX		
Input Bias Current (I _B)		1					pА	TYP		
Input Offset Current (Ios)		1					pА	TYP		
Input Common Mode Voltage Range (V_{CM})	V _S = 5.5V	-0.1 to +5.6					V	TYP		
Common Mode Rejection Ratio (CMRR)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V $V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	90 83	73	70	70	65	dB dB	MIN MIN		
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_O = 0.15V$ to 4.85V $R_L = 10k\Omega$, $V_O = 0.05V$ to 4.95V	97 108	90	87	86	79	dB dB	MIN MIN		
Input Offset Voltage Drift (ΔV _{OS} /Δ _τ)		2.4					μV/°C	TYP		
OUTPUT CHARACTERISTICS							-			
Output Voltage Swing from Rail	R _L = 600Ω	0.1					V	TYP		
	$R_L = 10k\Omega$	0.015					V	TYP		
Output Current (I _{OUT})		53	49	45	40	35	mA	MIN		
Closed-Loop Output Impedance	f = 200kHz, G = 1	3					Ω	TYP		
POWER SUPPLY	,									
Operating Voltage Range			2.5 5.5	2.5 5.5	2.5 5.5	2.5 5.5	V V	MIN MAX		
Power Supply Rejection Ratio (PSRR)	$V_S = 2.5V \text{ to } 5.5V$ $V_{CM} = (-V_S) + 0.5V$	91	74	72	72	68	dB	MIN		
Quiescent Current/Amplifier (IQ)	I _{OUT} = 0	470	650	727	750	815	μΑ	MAX		
DYNAMIC PERFORMANCE										
Gain-Bandwidth Product (GBP)	$R_L = 10k\Omega$	6					MHz	TYP		
Phase Margin (φ ₀)		60					degrees	TYP		
Full Power Bandwidth (BW _P)	< 1% distortion, R_L = 600 Ω	250					kHz	TYP		
Slew Rate (SR)	$G = +1$, 2V Step, $R_L = 10$ kΩ	3.7					V/µs	TYP		
Settling Time to 0.1% (t _s)	$G = +1$, 2V Step, $R_L = 600Ω$	2.1					μs	TYP		
Overload Recovery Time	very Time $V_{IN} \cdot Gain = V_{S}, R_{L} = 600\Omega$						μs	TYP		
NOISE PERFORMANCE										
Voltage Noise Density (e _n)	f = 1kHz	12					$nV/\sqrt{_{Hz}}$	TYP		
Current Noise Density (in)	f = 1kHz	3					fA/\sqrt{Hz}	TYP		

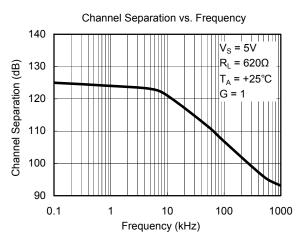

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

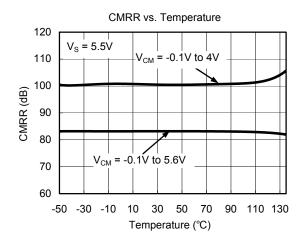


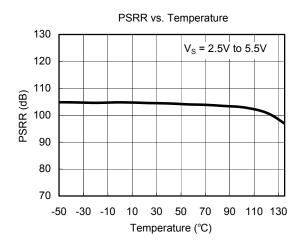


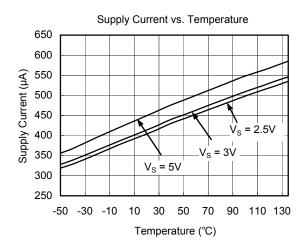


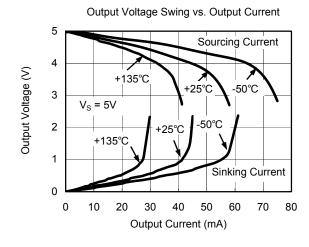


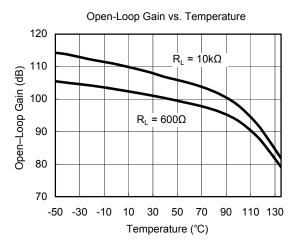


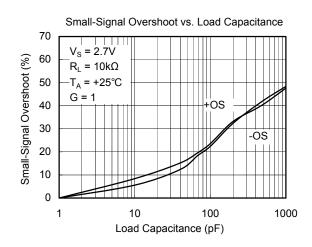

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

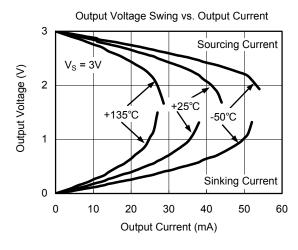


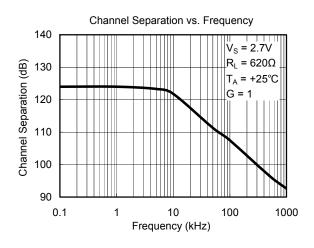


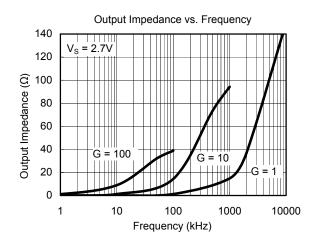


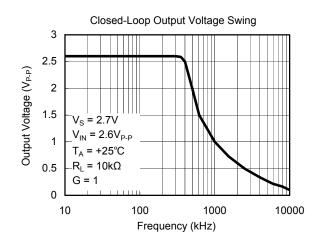


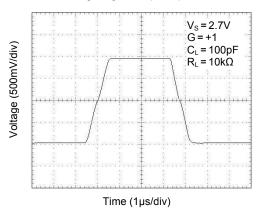



At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

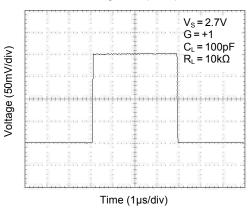


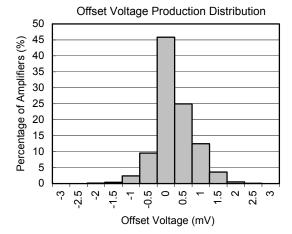


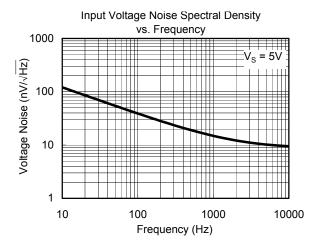




At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.






Large-Signal Step Response

APPLICATION NOTES

Driving Capacitive Loads

The SGM8634 can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of the amplifier and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.



Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting signal with the output. C_{F} and R_{Iso} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

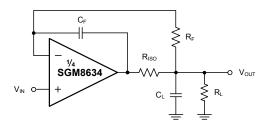


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM8634 operates from either a single +2.5V to +5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +V_S with a $0.1\mu F$ ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interfacing).

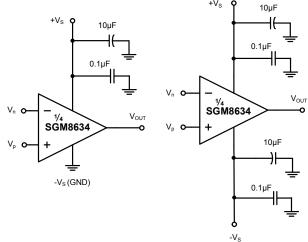


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGM8634 circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_p - V_n) \times R_2/R_1 + V_{REF}$.

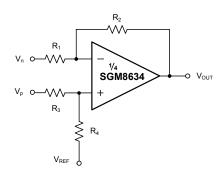


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

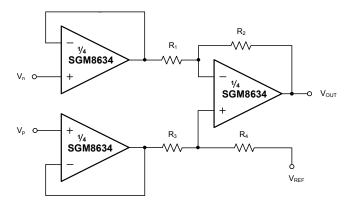
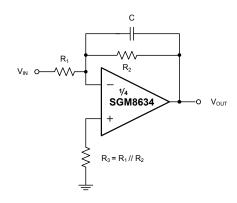
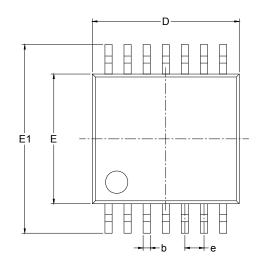
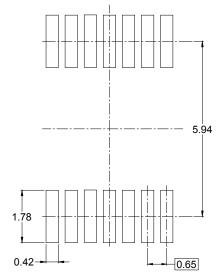
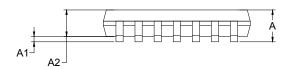


Figure 5. Instrumentation Amplifier

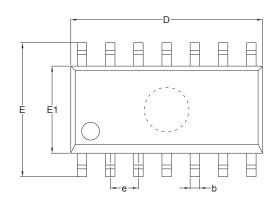
Low-Pass Active Filter

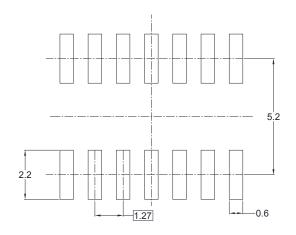
The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

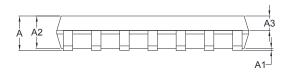




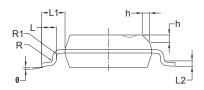

Figure 6. Low-Pass Active Filter

PACKAGE OUTLINE DIMENSIONS TSSOP-14

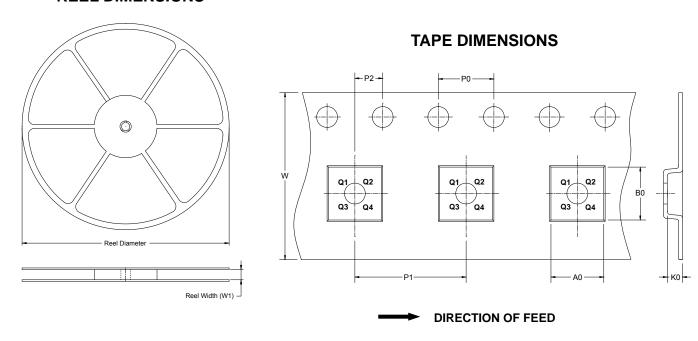

RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
А		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
D	4.860	5.100	0.191	0.201		
E	4.300	4.500	0.169	0.177		
E1	6.250	6.550	0.246	0.258		
е	0.650 BSC		0.026	BSC		
L	0.500	0.700	0.02	0.028		
Н	0.25 TYP		0.01	TYP		
θ	1°	7°	1°	7°		


PACKAGE OUTLINE DIMENSIONS SOIC-14

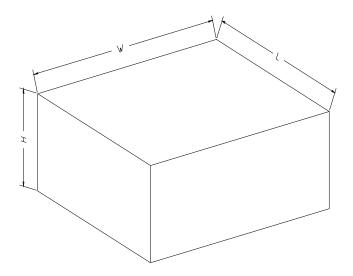
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.65	0.049	0.065	
A3	0.55	0.75	0.022	0.030	
b	0.36	0.49	0.014	0.019	
D	8.53 8.73		0.336	0.344	
E	5.80 6.20		0.228	0.244	
E1	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050 BSC		
L	0.45	0.80	0.018	0.032	
L1	1.04	REF	0.040 REF		
L2	0.25 BSC		0.01	BSC	
R	0.07	0.07			
R1	0.07		0.003		
h	0.30	0.50	0.012	0.020	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-14	13"	12.4	6.95	5.6	1.2	4.0	8.0	2.0	12.0	Q1
SOIC-14	13"	16.4	6.6	9.3	2.1	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by SGMICRO manufacturer:

Other Similar products are found below:

LM358SNG 430227FB AZV831KTR-G1 UPC824G2-A LT1678IS8 042225DB 058184EB SC2902DG UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD#PBF NCS20282FCTTAG UPC4741G2-E1-A LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T AS324AMTR-E1 TLV2772QPWR NJM4556AM-TE1 NJM2068M-TE1 AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR