

SGMOP07C 3MHz, Low Noise, High Voltage Precision Operational Amplifier

GENERAL DESCRIPTION

The SGMOP07C is low noise, low offset voltage and high voltage operational amplifier, which can be designed into a wide range of applications. The SGMOP07C has a high gain- bandwidth product of 3MHz, a slew rate of $4V/\mu s$, and a quiescent current of 0.9mA at wide power supply range.

The SGMOP07C is designed to provide optimal performance in low noise systems. It provides rail-to-rail output swing into heavy loads.

The single SGMOP07C is available in Green SOIC-8 package. It is specified over the extended -40° C to $+125^{\circ}$ C temperature range.

FEATURES

- Rail-to-Rail Output
- Low Bias Current: 1nA (TYP)
- High Open-Loop Gain: 120dB
- High PSRR: 130dB
- High Gain-Bandwidth Product: 3MHz
- Settling Time to 0.1% with 1V Step: 0.5µs
- Overload Recovery Time: 10µs
- Low Noise: 8.5nV/ JHz at 1kHz
- Supply Voltage Range: 3.6V to 36V or ±1.8V to ±18V
- Input Common Mode Voltage Range: (-V_s) + 1.5V to (+V_s) - 2V
- Low Quiescent Current: 0.9mA (TYP)
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-8 Package

APPLICATIONS

Sensors Audio Active Filters A/D Converters Communications Test Equipment Cellular and Cordless Phones Laptops and PDAs Photodiode Amplification

SGMOP07C

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGMOP07C	SOIC-8	-40°C to +125°C	SGMOP07CXS8G/TR	SGM OP07CXS8 XXXXX	Tape and Reel, 2500

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

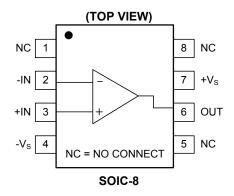
Supply Voltage, +V _S to -V _S	40V
Input Common Mode Voltage Range	
(-V _S) - 0.3	V to (+V _S) + 0.3V
Storage Temperature Range	65°C to +150°C
Junction Temperature	150°C
Lead Temperature (Soldering 10sec)	260°C
ESD Susceptibility	
НВМ	4000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	3.6V to 36V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATION

SG Micro Corp

ELECTRICAL CHARACTERISTICS

(V_S = $\pm 5V$ to V_S = $\pm 15V$, V_{CM} = 0, T_A = $\pm 25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
INPUT CHARACTERISTICS	•	•	•				
Input Offset Voltage	V _{os}			50		μV	
Input Bias Current	IB			1		nA	
Input Offset Current	los			1		nA	
Input Common Mode Voltage Range	V _{CM}		(-V _S) + 1.5		(+V _S) - 2	V	
Common Mode Rejection Ratio	CMRR	$(-V_S) + 1.5V \le V_{CM} \le (+V_S) - 2V$		140		dB	
Open-Loop Voltage Gain	A _{OL}	$R_L = 2k\Omega$		120		dB	
Input Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			0.8		µV/°C	
OUTPUT CHARACTERISTICS		•					
		$V_{\rm S}$ = ±15V, R _L = 2k Ω		450			
	N	$V_{\rm S}$ = ±15V, R _L = 10k Ω		90			
Output Voltage Swing from Rail	V _{OUT}	$V_{\rm S}$ = ±5V, R _L = 2k Ω		140		mV	
		$V_{\rm S}$ = ±5V, R _L = 10k Ω		30			
Output Current	I _{OUT}			35		mA	
POWER SUPPLY							
Operating Voltage Range	Vs		3.6		36	V	
Quiescent Current	Ι _Q	I _{OUT} = 0mA	<i>(</i>	0.9		mA	
Power Supply Rejection Ratio	PSRR	V _s = +3.6V to +36V		130		dB	
DYNAMIC PERFORMANCE							
Gain-Bandwidth Product	GBP	$V_0 = 100 \text{mV}_{P-P}, R_L = 2 \text{k}\Omega$		3		MHz	
Slew Rate	SR	$R_L = 2k\Omega$		4		V/µs	
Settling Time to 0.1%	ts	V_{IN} = 1V Step, R_L = 2k Ω , A_V = +1		0.5		μs	
Overload Recovery Time		$R_L = 2k\Omega, V_{IN} \times GAIN = V_S$		10		μs	
Phase Margin	φ _o	$V_0 = 100 \text{mV}_{P-P}, R_L = 2 \text{k}\Omega, C_L = 10 \text{pF}$		55		0	
Total Harmonic Distortion + Noise	THD+N	$V_{IN} = 1V_{RMS}, A_V = +1, R_L = 2k\Omega, f = 1kHz$		0.0008		%	
NOISE			•	-	•		
Input Voltage Noise		f = 0.1Hz to 10Hz		300		nV_{P-P}	
Voltage Noise Density	en	f = 1kHz		8.5		nV/√H	
Current Noise Density	in	f = 1kHz		1.5		pA/√H	

APPLICATION NOTES

Power-Supply Bypassing and Layout

The SGMOP07C operates from either a single +3.6V to +36V supply or dual ±1.8V to ±18V supplies. For single-supply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 10µF tantalum capacitor can be added for better performance.

Good PCB layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interfacing).

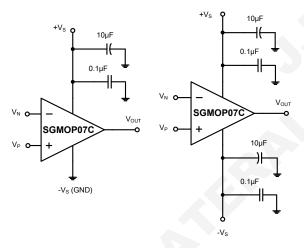


Figure 1. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGMOP07C circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

Differential Amplifier

The circuit shown in Figure 2 performs the difference

function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

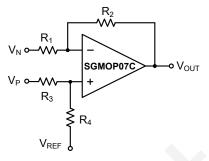


Figure 2. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 3 performs the same function as that in Figure 2 but with a high input impedance.

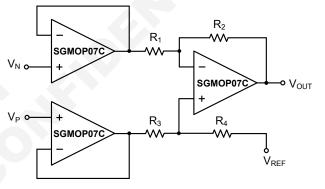
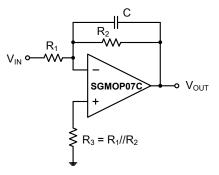
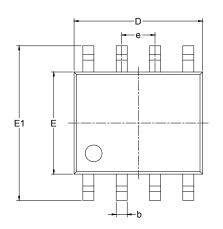
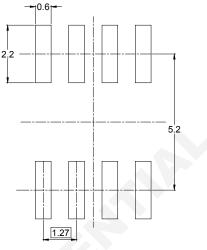


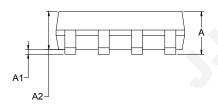
Figure 3. Instrumentation Amplifier

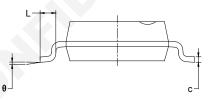
Low-Pass Active Filter

The low-pass filter shown in Figure 4 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

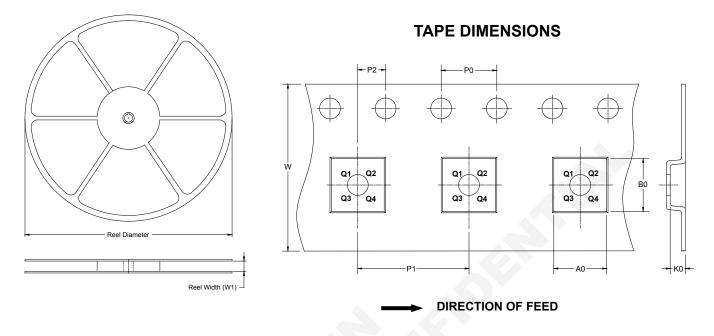




Figure 4. Low-Pass Active Filter


PACKAGE OUTLINE DIMENSIONS


SOIC-8

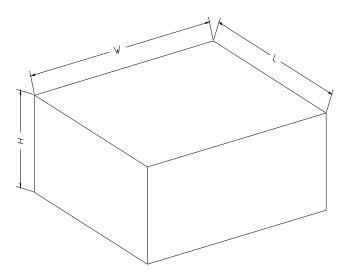
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.350	1.750	0.053	0.069	
A1 \>	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.4	5.4	2.1	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by SGMICRO manufacturer:

Other Similar products are found below :

 OPA2991IDSGR
 OPA607IDCKT
 007614D
 633773R
 635798C
 635801A
 702115D
 709228FB
 741528D
 NCV33072ADR2G

 SC2903VDR2G
 LM258AYDT
 LM358SNG
 430227FB
 430228DB
 460932C
 AZV831KTR-G1
 409256CB
 430232AB
 LM2904DR2GH

 LM358YDT
 LT1678IS8
 042225DB
 058184EB
 070530X
 714228XB
 714846BB
 873836HB
 MIC918YC5-TR
 TS912BIYDT

 NCS2004MUTAG
 NCV33202DMR2G
 M38510/13101BPA
 NTE925
 SC2904DR2G
 SC358DR2G
 LM358EDR2G
 AZV358MTR-G1

 AP4310AUMTR-AG1
 HA1630D02MMEL-E
 NJM358CG-TE2
 HA1630S01LPEL-E
 LM324AWPT
 HA1630Q06TELL-E
 NJM4558CG-TE2

 AZV358MMTR-G1
 SCY33178DR2G
 NCS4325DR2G
 LM7301SN1T1G
 NJU77806F3-TE1