

PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	- 40	Vdc	
Collector-Base Voltage	V _{CBO}	- 40	Vdc	
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc	
Collector Current — Continuous	Ic	- 500	mAdc	

• THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR -5 Board (1)	Pο	225	mW
T _A =25 °C			
Derate above 25°C		1.8	mW/°C
Thermal Resistance Junction to Ambient	R _{eJA}	556	°C/W
	D	300	mW
Alumina Substrate (2) T A = 25°C			
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{eJA}	417	°C/W
Junction and Storage Temperature	T_J,T_stg	-55 to +150	°C

• ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
F CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (3)	V (BR)CEO			Vdc
$(I_{C} = -1.0 \text{ mAdc}, I_{B} = 0)$		- 40	_	
Collector-Base Breakdown Voltage	V (BR)CBO			Vdc
$(I_{c} = -0.1 \text{mAdc}, I_{E} = 0)$		-40	_	
Emitter-Base Breakdown Voltage	V (BR)EBO			Vdc
$(I_E = -0.1 \text{mAdc}, I_C = 0)$		-5.0		
Base Cutoff Current	I BEV			μAdc
$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$		_	- 0.1	
Collector Cutoff Current	I _{CEX}			μAdc
$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$:	- 0.1	

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.
- 3. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

● ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
CHARACTERISTICS				
DC Current Gain	h _{FE}			_
$(I_{C} = -0.1 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		30	_	
$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		60	_	
$(I_{C} = -10 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		100	<u></u>	
$(I_{c} = -150 \text{ mAdc}, V_{ce} = -2.0 \text{ Vdc})(3)$		180	390	
$(I_{\odot} = -500 \text{ mAdc}, V_{\odot} = -2.0 \text{ Vdc})(3)$		20	-	
Collector–Emitter Saturation Voltage(3)	V _{CE(sat)}			Vdc
$(I_{C} = -150 \text{mAdc}, I_{B} = -15 \text{ mAdc})$		_	-0.4	
(I $_{\text{C}}$ = -500 mAdc, I $_{\text{B}}$ = -50 mAdc)		_	- 0.75	
Base-Emitter Saturation Voltage (3)	V BE(sat)			Vdc
$(I_{C} = -150 \text{ mAdc}, I_{B} = -15 \text{ mAdc})$		-0.75	- 0.95	
$(I_{c} = -500 \text{ mAdc}, I_{B} = -50 \text{ mAdc})$			- 1.3	

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product	f _T	_	_	MHz
$(I_{c} = -20 \text{ mAdc}, V_{ce} = -10 \text{ Vdc}, f = 100 \text{ MHz})$		200	-	
Collector-Base Capacitance	C cb			pF
$(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$		_	8.5	
Emitter-Base Capacitance	C eb			pF
$(V_{BE} = -0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$		** <u></u> 3	30	
Input Impedance	h ie			kΩ
(V $_{CE}$ = -10 Vdc, I $_{C}$ = -1.0 mAdc, f = 1.0 kHz)		1.5	15	
Voltage Feedback Ratio	h _{re}			X 10 ⁻⁴
(V $_{CE}$ = -10 Vdc, I $_{C}$ = -1.0 mAdc, f = 1.0 kHz)		0.1	8.0	
Small-Signal Current Gain	h _{fe}			_
(V $_{CE}$ = -10 Vdc, I $_{C}$ = -1.0 mAdc, f = 1.0 kHz)		60	500	
Output Admittance	h oe			μmhos
$(V_{CE} = -10 \text{ Vdc}, I_C = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		1.0	100	

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = -30 \text{ Vdc}, V_{EB} = -2.0 \text{ Vdc},$	t a	()	15	
Rise Time	I c = -150mAdc, I B1 = -15 mAdc)	t d	:	20	ns
Storage Time	$(V_{CC} = -30 \text{ Vdc}, I_{C} = -150 \text{ mAdc},$	t _s	-	225	ns
Fall Time	I _{B1} = I _{B2} = -15 mAdc)	t _f	9—	30	

^{3.} Pulse Test: Pulse Width ≤300 μs; Duty Cycle ≤2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

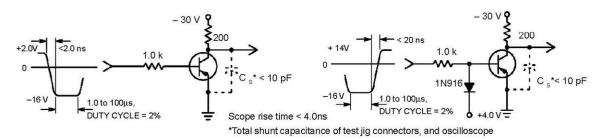
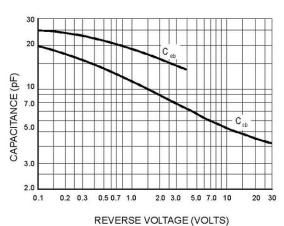



Figure 1. Turn-On Time

Figure 2. Turn-Off Time

2SA1036K

TYPICAL TRANSIENT CHARACTERISTICS

REVERSE VOLIAGE (VOLIS

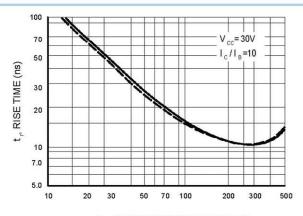

Figure 3. Capacitance

Figure 4. Charge Data

Figure 5. Turn-On Time

I $_{\rm c}$, COLLECTOR CURRENT (mA)

Figure 6. Rise Time

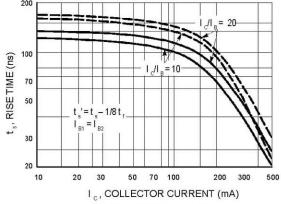
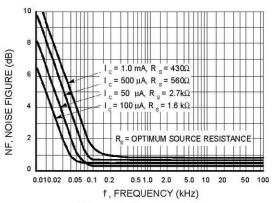
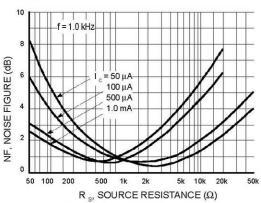



Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 $V_{CE} = -10 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ Bandwidth = 1.0 Hz



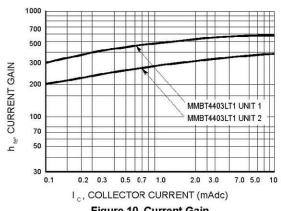

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

This group of graphs illustrates the relationship between h fe and other "h" parameters for this series of ransistors. To obtain these curves, a high-gain and a low-gain unit were selected from the MMBT4401LT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

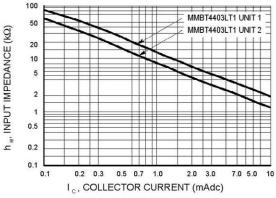
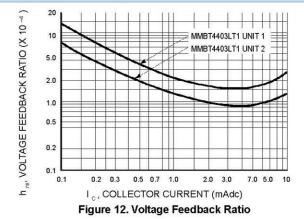



Figure 10. Current Gain

Figure 11. Input Impedance

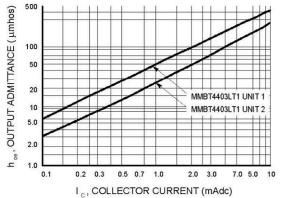


Figure 13. Output Admittance

STATIC CHARACTERISTICS

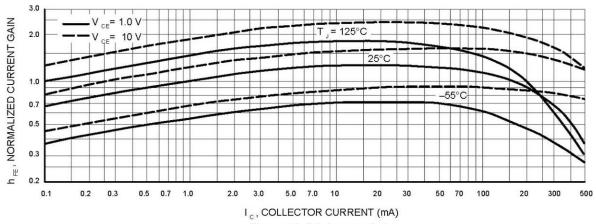


Figure 14. DC Current Gain

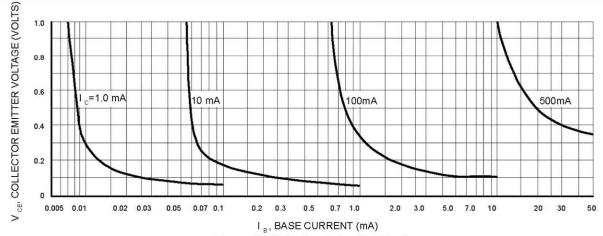


Figure 15. Collector Saturation Region

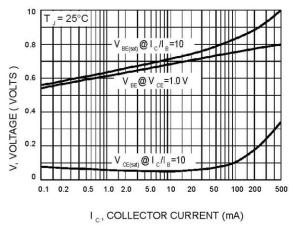


Figure 16. "On" Voltages

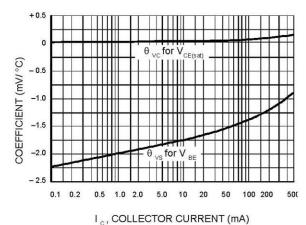


Figure 17. Temperature Coefficients

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Shikues manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B