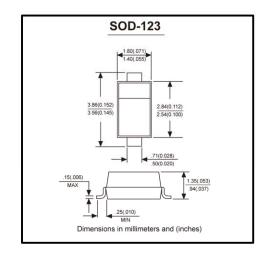


B5817W--B5819W

FEATURES


- ◆ For use in low voltage, high frequency inverters
- ◆ Free wheeling, and polanty protection applications

MECHANICAL DATA

Case: Molded plastic body Terminals: Plated leads solderable per MIL-STD-750,

Method 2026

Polarity: Polarity symbols marked on case Marking: B5817W:SJ, B5818W:SK, B5819W:SL

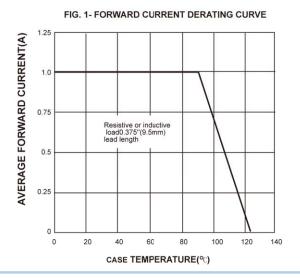
● Maximum ratings and electrical characteristics, Single diode @T_A=25℃

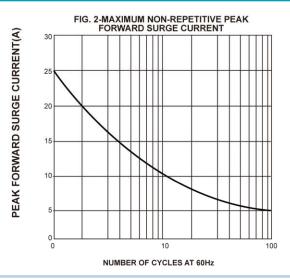
SYMBOLS	B5817W	B5818W	B5819W	UNITS
VRRM				
VRWM	20	30	40	V
VR				
VR(RMS)	14	21	28	V
lo	1			Α
IFSM	20			А
Pd	250			mW
Roja	500			K/W
Тѕтс	-65 to +150			°C
V _{RM}	20	30	40	V
	VRRM VRWM VR VR(RMS) IO IFSM Pd ROJA TSTG	VRRM VRWM 20 VR VR(RMS) 14 Io IFSM Pd RΘJA TSTG	VRRM VRWM 20 30 VR VR(RMS) 14 21 Io 1 1 IFSM 20 250 Pd 250 250 Reja 500 500 Tstg -65 to +150	VRRM VRWM 20 30 40 VR VR(RMS) 14 21 28 Io 1

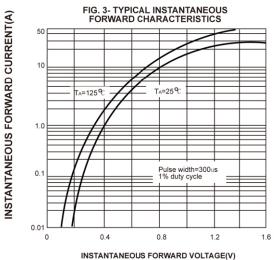
Electrical ratings @TA=25°C

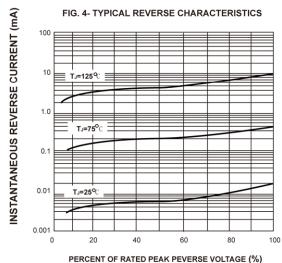
PARAMETER	SYMBOLS	Min.	Max.	Unit	Test conditions	
Reverse breakdown voltage	V _(BR)	20 30 40		V V V	I _R =1mA	B5817W B5818W B5819W
Reverse voltage leakage current	lR		1	mA	V _R =20V V _R =30V V _R =40V	B5817W B5818W B5819W
Forward voltage			0.45 0.75	v v	I _F =1A I _F =3A	B5817W
	VF		0.55 0.875			B5818W
			0.6 0.9			B5819W
Diode capacitance	C□		120	pF	V _R =4V,f=1.0MHz	

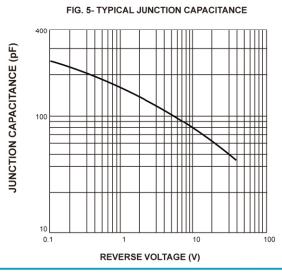
SHIKE MAKE CONSCIOUS PRODUCT

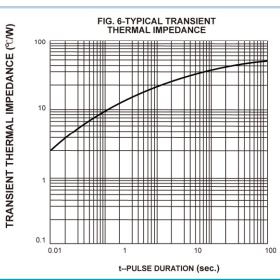

Conscious Products Begin With Conscious People


REV.07






B5817W--B5819W



SHIKE MAKE CONSCIOUS PRODUCT
CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE
REV.07

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Shikues manufacturer:

Other Similar products are found below:

MA4E2039 MA4E2508M-1112 MBR10100CT-BP MBR1545CT MMBD301M3T5G GS1JE-TP RB160M-50TR BAS 3010S-02LRH E6327
BAT 54-02LRH E6327 NSR05F40QNXT5G NSVR05F40NXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W
SBAT54CWT1G SBM30-03-TR-E SK310-T SK33A-TP SK34B-TP SS3003CH-TL-E PDS3100Q-7 GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G BAS 70-02L E6327 DMJ3940-000 SB007-03C-TB-E SB10015M-TL-E SB1003M3-TL-E SK32A-TP SK33B-TP SK35A-TP SK38B-LTP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G VS-6CWQ10FNHM3
CRG04(T5L,TEMQ) ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA240-HF ACDBA3100-HF
CDBQC0530L-HF BAT54-13-F ACDBA340-HF