NUP2105

Dual Line CAN Bus Protector

The NUP2105 has been designed to protect the CAN transceiver in high-speed and fault tolerant networks from ESD and other harmful transient voltage events. This device provides bidirectional protection for each data line with a single compact SOT-23 package, giving the system designer a low cost option for improving system reliability and meeting stringent EMI requirements.

Features

- 350 W Peak Power Dissipation per Line ($8 \times 20 \mu \mathrm{sec}$ Waveform)
- Low Reverse Leakage Current ($<100 \mathrm{nA}$)
- Low Capacitance High-Speed CAN Data Rates
- IEC Compatibility: - IEC $61000-4-2$ (ESD): Level 4
-IEC 61000-4-4 (EFT): $40 \mathrm{~A}-5 / 50 \mathrm{~ns}$
- IEC $61000-4-5$ (Lighting) $8.0 \mathrm{~A}(8 / 20 \mu \mathrm{~s})$
- ISO 7637-1, Nonrepetitive EMI Surge Pulse 2, 9.5 A ($1 \times 50 \mu \mathrm{~s}$)
- ISO 7637-3, Repetitive Electrical Fast Transient (EFT) EMI Surge Pulses, 50 A ($5 \times 50 \mathrm{~ns}$)
- Flammability Rating UL $94 \mathrm{~V}-0$
- Pb -Free Packages are Available

Applications

- Industrial Control Networks
- Smart Distribution Systems (SDS ${ }^{\mathrm{TM}}$)
- DeviceNet ${ }^{\mathrm{TM}}$
- Automotive Networks
- Low and High-Speed CAN
- Fault Tolerant CAN

時科
SHIKUES
NUP2105

MAXIMUM RATINGS ($\mathrm{TJ}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Rating	Value	Unit
PPK	Peak Power Dissipation $8 \times 20 \mu s$ Double Exponential Waveform (Note 1)	350	W
$\mathrm{~T}_{J}$	Operating Junction Temperature Range	-40 to 125	${ }^{\circ} \mathrm{C}$
T_{J}	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Solder Temperature (10 s)	260	${ }^{\circ} \mathrm{C}$
ESD	Human Body model (HBM) Machine Model (MM) IEC $61000-4-2$ Specification (Contact)	16	kV

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 1.

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {RWM }}$	Keverse Working Voltage	(Note 2)	24			V
$V_{\text {BR }}$	Breakdown Voltage	$\mathrm{I}_{\mathrm{T}}-1 \mathrm{~mA}$ ((Note 3)	26.2		32	V
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\text {RWM }}=24 \mathrm{~V}$		15	100	nA
V_{c}	Clamping Voltage	$l_{\text {pp }}=5 \mathrm{~A}(8 \times 20 \mu \mathrm{~s}$ Waveorm) (Notc 4)			40	V
V_{c}	Clamping Voltage	$\begin{aligned} & I_{\mathrm{pp}}=8 \mathrm{~A}(8 \times 20 \mu \mathrm{~s} \text { Waveorm) } \\ & \text { (Note 4) } \end{aligned}$			44	V
Ipp	Maxillum Peak Pulse Cunteril	$8 \times 20 \mu s$ Wavefunm(Nole 4)			8.0	A
C.I	Capacitance	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MH7}$ (l ine to GND)			30	pF

2. TVS devices are normally selected according to the working peak reverse voltage (VRWM), which should be equal or greater than the DC or continuous peak operating voltage level.
3. VBR is measured at pulse test current IT.
4. Pulse waveform per Figure 1.

NUP2105

TYPICAL PERFORMANCE CURVES

Figure 1. Pulse Waveform, $8 \times 20 \mu \mathrm{~s}$

Figure 3. Typical Junction Capacitance vs Keverse Voltage

Figure 5. I_{R} versus Temperature Characteristics of the NUP2105

Figure 2. Clamping Voltage vs Peak Pulse Current

Figure 4. $V_{B R}$ versus I_{T} Characteristics of the NUP2105

Figure 6. Temperature Power Dissipation Derating of

NUP2105

TVS Diode Protection Circuit

TVS diodes provide protection to a transceiver by clamping a surge voltage to a safe level. TVS diodes have high impedance below and low impedance above their breakdown voltage. A TVS Zener diode has its junction optimized to absorb the high peak energy of a transient event, while a standard Zener diode is designed and specified to clamp a steady state voltage.
Figure 7 provides an example of a dual bidirectional TVS diode array that can be used for protection with the high-speed CAN network. The bidirectional array is created from four identical Zener TVS diodes. The clamping voltage of the composite device is equal to the breakdown
voltage of the diode that is reversed biased, plus the diode drop of the second diode that is forwarded biased.

Figure 7. High-Speed and Fault Tolerant CAN TVS Protection Circuit

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1882
2. CONTROLLING DIMENSION: INCH

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINMMUM THICKNESS OF BASE MATERIAL.
4. $318-01$ THRU -07 AND - 09 OBSOLETE, NEW STANDARD 318-08.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.1102	0.1197	2.80	3.04
B	0.0472	0.0551	1.20	1.40
C	0.0350	0.0440	0.89	1.11
D	0.0150	0.0000	0.37	0.50
G	0.0701	0.0807	1.78	2.04
H	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
K	0.0140	0.0285	0.35	0.69
L	0.0350	0.0401	0.89	1.02
S	0.0530	0.1039	2.10	2.84
V	0.0177	0.0236	0.45	0.60

STME 27:
PIN 1. CATHODE
2 CATHODE
3. CATHODE

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by Shikues manufacturer:
Other Similar products are found below :
60KS200C D18V0L1B2LP-7B D5V0F4U5P5-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A JANTX1N6053A
SA110CA SA60CA SA64CA SMBJ12CATR SMBJ33CATR SMBJ8.0A ESD101-B1-02ELS E6327 ESD105-B1-02EL E6327 ESD112-B102EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF
3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP JANTX1N6126A JANTX1N6462 JANTX1N6465 USB50805e3/TR7 D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 SM12-7 SM1605E3/TR13 SMLJ45CA-TP CEN955 W/DATA 82350120560 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B ESD101-B1-02EL E6327 824500181 MMAD1108/TR13 5KP100A

