FEATURES

- Compliant to USB Specifications
- Integrated $80 \mathrm{~m} \Omega$ Power MOSFET
- Low Supply Current
$15 \mu \mathrm{~A}$ Typical at Switch On State
$1 \mu \mathrm{~A}$ Typical at Switch Off State
- Wide Input Voltage Range:2.4V to 5.5V
- Fast Transient Response: $<2 \mu \mathrm{~s}$
- Reverse Current Flow Blocking
- Thermal Shutdown Protection
- Hot Plug-In Application (Soft-Start)
- Available in a 5-Pin SOT23-5 Package

APPLICATIONS

- USB Bus/Self Powered Hubs
- USB Peripherals
- Notebook Computers
- Battery-Charger Circuits
- Personal Communication Devices

GENERAL DESCRIPTION

The SDOOHA is a cost-effective, low voltage,single P-MOSFET load switch,optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. This switch operates with inputs ranging from 2.4 V to 5.5 V , making it ideal for both 3 V and 5 V systems. The switch's low $\mathrm{R}_{\mathrm{DS}(O \mathrm{~N})}$, $80 \mathrm{~m} \Omega$,meets USB voltage drop requirements. The SDOOHA is also protected from thermal overload which limits power dissipation and junction temperatures. Current limit threshold is programmed with a resistor from SET to ground. The quiescent supply current is typically $15 \mu \mathrm{~A}$ at switch on state. At switch off state the supply current decreases to less than $1 \mu \mathrm{~A}$. The SDOOHA is available in SOT23-5 package.

TYPICAL APPLICATION

Figure 1. Basic Application Circuit

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Supply Voltage	-0.3V to 7V	Junction Temperature(Note2)................. $150^{\circ} \mathrm{C}$
EN Voltages..........	-0.3V to ($\mathrm{V}_{10}+0.3 \mathrm{~V}$)	Operating Temperature Range....... $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SET Voltage..........	-0.3 V to ($\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$)	Lead Temperature(Soldering,10s)........... $300^{\circ} \mathrm{C}$
Power Dissipation	0.4W	Storage Temperature Range........ $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Thermal Resistance θ_{J}	.130${ }^{\circ} \mathrm{C} / \mathrm{W}$	ESD HBM(Human Body Mode).................2kV
Thermal Resistance θ_{J}	. $250^{\circ} \mathrm{C} / \mathrm{W}$	ESD MM(Machine Mode).....................200V

PACKAGE/ORDER INFORMATION

PIN DESCRIPTION

Pin Name	Pin Number	
VOUT	1	Power-switch output
GND	2	Ground connection; connect externally to Power PAD
SET	3	External resistor used to set current-limit threshold
EN	4	Enable input, logic high turns on power switch
VIN	5	Input voltage; connect a 10uF or greater ceramic capacitor from VIN to GND as close to the IC as possible

ELECTRICAL CHARACTERISTICS (Note 3)
$\left(V_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
Input Voltage Range		$V_{\text {IN }}$		2.4		5.5	V	
Switch On Resistance		$\mathrm{R}_{\text {DS(ON) }}$	$\mathrm{V}_{10}=5 \mathrm{~V}$		80	100	$\mathrm{m} \Omega$	
		$\mathrm{V}_{10}=3 \mathrm{~V}$		90	110	$m \Omega$		
Operation Quiescent Current			I_{0}	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{EN}=\text { Active, } \\ & \text { No load } \end{aligned}$		15	25	$\mu \mathrm{A}$
Off Supply Current		$\mathrm{I}_{\text {O(OFF) }}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{EN}=$ Inactive			1	$\mu \mathrm{A}$	
Off Switch Current		$\mathrm{I}_{\text {(SSW Off) }}$	$\mathrm{V}_{1 N}=5.5 \mathrm{~V}, \mathrm{EN}=$ Inactive			1	$\mu \mathrm{A}$	
Under-voltage Lockout		$\mathrm{V}_{\text {UVLO }}$	$\mathrm{V}_{\text {IN }}$ Increasing		1.8	2.4	V	
Under-voltage Lockout Hysteresis		$\Delta \mathrm{V}_{\text {UvLO }}$	$\mathrm{V}_{\text {IN }}$ decreasing		0.1		V	
Current Limit Threshold		$\mathrm{I}_{\text {LM }}$	$\mathrm{R}_{\text {SET }}=6.8 \mathrm{k} \Omega$		1		A	
EN Threshold	Logic-Low Voltage	VIL	$\mathrm{V}_{\text {IV }}=2.5 \mathrm{~V}$ to 5.5 V			0.8	V	
	Logic-High Voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 5.5 V	2			V	
Output Leakage Current		$\mathrm{I}_{\text {LEAK }}$	$\begin{aligned} & \mathrm{EN}=\text { Inactive, } \\ & \mathrm{R}_{\mathrm{LOAD}}=0 \Omega \\ & \hline \end{aligned}$		0.5	10	$\mu \mathrm{A}$	
Current Limit Response Time		$\mathrm{T}_{\text {RESP }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		1		$\mu \mathrm{S}$	
Thermal Shutdown Protection		$\mathrm{T}_{\text {SD }}$			150		${ }^{\circ} \mathrm{C}$	
Thermal Shutdown Hysteresis		$\Delta \mathrm{T}_{\text {so }}$			20		${ }^{\circ} \mathrm{C}$	

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formula: $T_{J}=T_{A}+\left(P_{D}\right) \times\left(250^{\circ} \mathrm{C} / \mathrm{W}\right)$.
Note 3: 100% production test at $25^{\circ} \mathrm{C}$. Specifications over the temperature range are guaranteed by design and characterization.

TYPICAL PERFORMANCE CHARACTERISTICS

SDOOHA TURN ON

SDOOHA TURN OFF
$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=10 \mathrm{uF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Short Response
$\mathrm{V}_{\text {IV }}=5 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=10 \mathrm{uF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FUNCTIONAL BLOCK DIAGRAM

Figure 2. SDOOHA Block Diagram

APPLICATIONS INFORMATION

The SDOOHA is a single channel current limiting load switch that is intended to protect against short circuit and over current events by current limiting to a preset level. This device is optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. The switch's low $\mathrm{R}_{\text {DS(ON) }}, 80 \mathrm{~m} \Omega$, meets USB voltage drop requirements; and a flag output is available to indicate fault conditions to the local USB controller.

Input and Output

$\mathrm{V}_{\text {IN }}$ (input) is the power source connection to the internal circuitry and the source of the MOSFET. $\mathrm{V}_{\text {out }}$ (output) is the drain of the MOSFET. In a typical application, current flows through the switch from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {out }}$ toward the load. If $\mathrm{V}_{\text {out }}$ is greater than $\mathrm{V}_{\text {IN }}$, current will flow from $\mathrm{V}_{\text {out }}$ to $\mathrm{V}_{\text {IN }}$ since the MOSFET is bidirectional when on. The SDOOHA's reverse current blocking feature
prevents current to flow from $\mathrm{V}_{\text {out }}$ to $\mathrm{V}_{\text {IN }}$ when the device is disabled.

Soft Start for Hot Plug-In Applications

In order to eliminate the upstream voltage droop caused by the large inrush current during hot-plug events,the "soft-start" feature effectively isolates the power source from extremely large capacitive loads,satisfying the USB voltage droop requirements.

Input capacitor

The input capacitor $\mathrm{C}_{\mathbb{N}}$ protects the power supply from current transients generated by the load attached to the SDOOHA. When a short circuit is suddenly applied to the output of the SDOOHA, a large current, limited only by the $\mathrm{R}_{\text {DS(ON) }}$ of the MOSFET, will flow for less than $2 \mu \mathrm{~s}$ before the current limit circuitry activates. In this event, a moderately sized $\mathrm{C}_{\text {IN }}$ will dramatically reduce the voltage transient seen by the power
supply and by other circuitry upstream from the SDOOHA. The extremely fast short-circuit response time of the SDOOHA reduces the size requirement for $\mathrm{C}_{\mathbb{N}}$. $\mathrm{C}_{\mathbb{N}}$ should be located as close to the device $\mathrm{V}_{\text {IN }}$ pin as practically possible. Ceramic, tantalum, or aluminum electrolytic capacitors are appropriate for $\mathrm{C}_{\mathbb{N}}$. There is no specific capacitor ESR requirement for $\mathrm{C}_{\mathbb{N}}$. However, for higher current operation, ceramic capacitors are recommended for $\mathrm{C}_{\mathbb{N}}$ due to their inherent capability over tantalum capacitors to withstand input current surges from low impedance sources such as batteries in portable devices.

Output capacitor

A low-ESR $150 \mu \mathrm{~F}$ aluminum electrolytic or tantalum between $\mathrm{V}_{\text {out }}$ and GND is strongly recommended to meet the 330 mV maximum droop requirement in the hub $\mathrm{V}_{\text {Bus }}$ (Per USB 2.0, output ports must have a minimum $120 \mu \mathrm{~F}$ of low-ESR bulk capacitance per hub). Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the downstream connector to reduce EMI and decouple voltage droop caused when downstream cables are hot-insertion transients. Ferrite beads in series with $\mathrm{V}_{\text {bus }}$, the ground line and the $0.1 \mu \mathrm{~F}$ bypass capacitors at the power connector pins are recommended for EMI and ESD protection. The bypass capacitor itself should have a low dissipation factor to allow decoupling at higher frequencies.

Thermal Considerations

Since the SDOOHA has internal current limit and over temperature protection,junction temperature is rarely a concern. However, if the application requires large currents in a hot environment, it is possible that temperature, rather than current limit, will be the dominant regulating condition. In these applications, the maximum current available without risk of an over-temperature condition must be calculated.Power dissipation can be
calculated based on the output current and the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of switch as below.

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times \mathrm{I}_{\mathrm{OUT}}{ }^{2}
$$

Although the devices are rated for $2 \mathrm{~A}(\max)$ of output current, but the application may limit the amount of output current based on the total power dissipation and the ambient temperature. The final operating junction temperature for any set of conditions can be estimated by the following thermal equation :

$$
P_{D(\text { Max })}=\frac{T_{J(M A X)}-T_{A}}{\theta_{J A}}
$$

Where $T_{J \text { (MAX) }}$ is the maximum operation junction temperature $150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}$ is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. The junction to ambient thermal resistance θ_{JA} is layout dependent. For SOT23-5 and TSOT23-5 packages, the thermal resistance θ_{JA} is $250^{\circ} \mathrm{C} / \mathrm{W}$. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ is 0.4 W for SOT23-5 and TSOT23-5 Package.

Current limit threshold Setting

Current limit threshold is programmed with a resistor from SET to ground marked as $\mathrm{R}_{\text {SET }}$. It can be estimated by the following equation:

$$
\mathrm{I}_{\text {SET }}(\mathrm{A})=\frac{6.8 \mathrm{k} \Omega}{\mathrm{R}_{\text {SET }}(\mathrm{k} \Omega)}
$$

Such as the following table.

$\mathrm{I}_{\text {SET }}(\mathrm{mA})$	$\mathrm{R}_{\text {SET }}(\mathrm{k} \Omega)$
600	11.3
800	8.45
1000	6.8
1500	4.53
2000	3.4

PCB Layout Recommendations

When laying out the printed circuit board, the following checking should be used to ensure proper operation of the SDOOHA. Check the following in your layout:
$>$ Does the (+) plates of $\mathrm{C}_{\mathbb{N}}$ connect to VIN as closely as possible. This capacitor provides the AC current to the internal power MOSFETs.
$>$ Keep the (-) plates of $\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {out }}$ as close as possible

PACKAGE DESCRIPTION

Figure 3. SDOOHA Suggested Layout

5LD SOT-23 PACKAGE OUTLINE DIMENSIONS

Dimension	Min.	Max.
A	1.05	1.35
A1	0.04	0.15
B	0.3	0.5
C	0.09	0.2
D	2.8	3.0
H	2.5	3.1
E	1.5	1.7
e	0.95 REF.	
e1	1.90 REF.	
L1	0.2	0.55
L	0.35	0.8
Q	0°	10°

FRONT VIEW

SIDE VIEW

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by SHOUDING manufacturer:
Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

