White LED Driver for Constant Current Boost DC/DC Converter

Description

The SD3337C is a step-up DC/DC converter with a constant current to drive white LEDs or similar. The device can drive up to eight LEDs in series from a Li-Ion cell. The LED current is set by the external resistor ($\mathrm{R}_{\text {SET }}$) and is directly regulated by the feedback (FB) voltage (typ: 200mV) across the external resistor $\mathrm{R}_{\mathrm{SET}}$.

To ensure maximum safety during operation, the output has integrated overvoltage protection that prevents damage to the device in case of some fault conditions. The OVP voltage can be programmed by two external resistors.

The SD3337C is available in a tiny SOP8/PP package.

Features

$>$ Input voltage range: 2.3 to 6 V
> Programmable LED Current
> Drives LEDs Up to 27 V
> Switching Frequency: up to 800 KHz
$>$ Wide dimming frequency range: $20 \mathrm{KHz} \sim$ 360 KHz
> Programmable Overvoltage Protection
> Tiny SOP8/PP Package

Applications

> Handheld Devices
> MP3 Players
> GPS Receivers
> PDA
> Cellular Phones

Typical Application Circuit

[^0]

* This application circuit is applied to PWM dimming.

$$
*_{\text {LED }}=200 \mathrm{mV} / \mathrm{R}_{\text {SET }}
$$

Absolute Maximum Ratings (Note1)

Supply Voltage 7V
SW Voltage 36V
FB Voltage 7 V
EN Voltage. 7V
OVP Voltage 7 V
Operating Temperature Range (Note 2) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)... $300^{\circ} \mathrm{C}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The SD3337C is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

Pin Assignment

	PIN	NAME	FUNCTION
	1	OVP	Overvoltage protection Pin
	2	VIN	Input Supply Pin
	3,4,9	SW	Switch Output Pin
	5,6	GND	Ground
$\square \square \square \square \square \square$	7	FB	Feedback Pin
	8	EN	ON/OFF Control (High Enable)

*EXPOSED PAD (PIN 9) IS SW, MUST BE SOLDERED TO PCB.

Electrical Characteristics

Operating Conditions: $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Operating Voltage Range		2.3		6	V
$\mathrm{V}_{\text {FB }}$	Feedback Voltage	$\mathrm{TA}=25^{\circ} \mathrm{C}, \quad \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA}$		200		mV
$I_{\text {FB }}$	FB Pin Bias Current	EN=GND		60		nA
$1{ }_{\text {a }}$	Operating quiescent current into VIN	lout $=0 \mathrm{~mA}$, not switching		100		uA
$\mathrm{I}_{\text {SD(OUT }}$	Shutdown current			20		uA
$\mathrm{F}_{\text {sw }}$	Switching Frequency			800		KHz
$\mathrm{V}_{\text {sw }}$	Maximum switch voltage			30		V
$\mathrm{R}_{\mathrm{ds}(\mathrm{ON})}$	MOSFET on-resistance			50		$\mathrm{m} \Omega$
DC	Maximum Duty Cycle			90		\%
Vovp	Output overvoltage protection	Vout rising		1.212		V
$\mathrm{V}_{\text {ENL }}$	EN Falling Threshold			0.5		V
$\mathrm{V}_{\text {ENH }}$	EN Rising Threshold			0.7		V

Typical Performance Characteristics

Operating Conditions: $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=0.68 \Omega$, 8 PCS LED Series, unless otherwise specified.

Block Diagram

Pin Functions

PIN	NAME	\quad FUNCTION
1	OVP	Overvoltage protection Pin. Programs VOUT overvoltage protection level (OVP) to protect device.
2	VIN	Input Supply Pin. Must be locally bypassed.
$3,4,9$	SW	Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI.
5,6	GND	Ground Pin.
7	FB	Feedback Pin. Reference voltage is 200mV. Connect cathode of lowest LED and resistor here. Calculate resistor value according to the formula: $\mathrm{R}_{\text {SET }}=200 \mathrm{mV} / I_{\text {LED. }}$.
8	EN	Shutdown Pin. Connect to 1.5V or higher to enable device; 0.5V or less to disable device.

Application Information

Operation

The SD3337C operates in a constant frequency, current mode like a standard boost converter but regulates the voltage across the external resistor $\left(\mathrm{R}_{\mathrm{SET}}\right)$ instead of the output voltage. This gives an accurate regulated LED current independent of the input voltage and number of LEDs connected. With integrated overvoltage protection (OVP), the SD3337C is configured as a current source with overvoltage protection ideally suited to drive LEDs. The device can drive up to eight serial LEDs with the internal switch.

LED Current Control

The LED current is controlled by the feedback resistor ($\mathrm{R}_{\text {SET }}$). The feedback reference is 200 mV . The LED current is $200 \mathrm{mV} / \mathrm{R}_{\text {SET }}$. In order to have accurate LED current, precision resistors are preferred (1% is recommended).

Dimming Control

With the PWM signal applied to the FB pin, the SD3337C is turned on or off by the PWM signal. The LEDs operate at either zero or full current. The average LED current increases proportionally with the duty cycle of the PWM signal. A 0\% duty cycle will turn off the SD3337C and corresponds to zero LED current. A 100\% duty cycle corresponds to full current. The typical frequency range of the PWM signal is 20 kHz to 360 kHz . These are two kinds of dimming control circuits shown in figure 1 and figure 2 .

Figure 1: PWM Dimming control circuit

Figure 2: PWM Dimming control circuit

Diode Selection

The high switching frequency of SD3337C demands a high-speed rectifier diode. For most applications, Schottky diodes are recommended because of their fast recovery time and low forward voltage. Moreover, the diode reverse breakdown voltage must exceed $\mathrm{V}_{\text {out }}$. In general, use a high-speed silicon rectifier diode with adequate reverse voltage.

Inductor Selection

The selection of the inductor together with the nominal LED current, input, and output voltage of the
application determines the switching frequency of the converter. Because of the SD3337C's high switching frequency, inductors with a ferrite core or equivalent are recommended. Powdered iron cores are not recommended due to their high losses at frequencies over 50 KHz .

Output and Input Capacitors Selection

Larger output capacitors reduce noise and improve load-transient response, stability, and power-supply rejection. Since output ripple in boost DC-DC designs is dominated by capacitor equivalent series resistance (ESR), Low-ESR capacitors must be used.

The input capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ reduces the current peaks caused by the input supply and reduces noise injection. Its value is largely determined by the source impedance of the input supply. High source impedance requires high input capacitance, particularly at the input voltage falls. At low input voltage, increasing C_{IN} or lowering its ESR can improve efficiency. Using the same capacitance value for $\mathrm{C}_{\mathbb{I N}}$ as for $\mathrm{C}_{\text {out }}$ is a good start.

The Cout ESR affects loop stability by introducing a left half-plane zero. A small capacitor C 1 between FB and GND forms a pole with the feedback resistance that cancels the ESR zero. This small capacitor C1 and provide sufficient compensation for the loop.

Overvoltage Protection (OVP)

As with any current source, the output voltage rises as the output impedance increases or is disconnected. To prevent the output voltage from exceeding the maximum main switch (Q1) voltage rating of 36 V , an overvoltage protection circuit is integrated. When the output voltage exceeds the OVP threshold voltage, (Q1) turns off. The converter switch remains off until the output voltage falls below the OVP threshold voltage. As long as the output voltage is below the OVP threshold the converter continues its normal operation, until the output voltage exceeds the OVP threshold again.

Packaging Information

SOP8/PP (EXP PAD) Package Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	1.350	1.750	0.053	0.069				
A1	0.050	0.150	0.004	0.010				
A2	1.350	1.550	0.053	0.061				
b	0.330	0.510	0.013	0.020				
c	0.170	0.250	0.006	0.010				
D	4.700	5.100	0.185	0.200				
D1	3.202	3.402	0.126	0.134				
E	3.800	4.000	0.150	0.157				
E1	5.800	6.200	0.228	0.244				
E2	2.313	2.513	0.091	0.099				
e	$1.270($ BSC $)$							$0.050($ BSC $)$
L	0.400	1.270	0.016	0.050				
θ	0°	8°	0°	8°				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by SHOUDING manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS$\underline{2415} \underline{X K S}-1215 \underline{033456}$ NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG XKS-2415 XKS-2412

[^0]: * This application circuit is applied to PWM dimming.

