1MHz, 2.5A Step-Up Current Mode PWM Converter

General Description

The SD6271 is a current mode boost DC-DC converter. Its PWM circuitry with built-in 0.2Ω power MOSFET make this regulator highly power efficient. The internal compensation network also minimizes as much as 6 external component counts. The non-inverting input of error amplifier connects to a 0.6 V precision reference voltage and internal soft-start function can reduce the inrush current.

The SD6271 is available in the SOT23-6L package and provides space-saving PCB for application fields.

Features

> Adjustable Output up to 12 V
> Internal Fixed PWM frequency: 1.0 MHz
> Precision Feedback Reference Voltage: 0.6V ($\pm 2 \%$)
> Internal $0.2 \Omega, 2.5 \mathrm{~A}, 16 \mathrm{~V}$ Power MOSFET
> Shutdown Current: $0.1 \mu \mathrm{~A}$
$>$ Over Temperature Protection
> Over Voltage Protection
> Adjustable Over Current Protection: 0.5A ~ 2.5A
> Package: SOT23-6L

Applications

> Chargers
> LCD Displays
> Digital Cameras
> Handheld Devices
> Portable Products

Typical Application Circuit

Function Block Diagram

Pin Descriptions

SOT23-6L

Name	No.	I/ O	Description
LX	1	O	Power Switch Output
GND	2	P	IC Ground
FB	3	I	Error Amplifier Inverting Input
EN	4	I	Enable Control (Active High)
V $_{\text {CC }}$	5	P	IC Power Supply
OC	6	I	Adjustable Current Limit (Floating Available)

Ordering Information

Part Number	Mark	Operating Temperature	Package	MOQ	Description
SD6271LR-G1	AL***	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	SOT23-6L	3000 EA	Tape \& Reel

Marking Information

SOT23-6L

Lot Number: Wafer lot number's last two digits
For Example: $132386 T \mathrm{~TB} \rightarrow 86$
Year: Production year's last digit
Part Number Code: Part number identification code for this product. It should be always "AL".
Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	V_{CC}		0		6	V
LX Voltage	V_{LX}		0		16	V
EN,FB Voltage			0		6	V
Power Dissipation	P_{D}	SOT23-6L $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			455	mW
Thermal Resistance (Note1)	θ_{JA}	SOT23-6L			+220	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	T_{J}				+150	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{OP}		-40		+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{ST}		-65		+150	${ }^{\circ} \mathrm{C}$
Lead Temperature		(soldering, 10 sec)			+260	${ }^{\circ} \mathrm{C}$

Note1:

θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

IR Re-flow Soldering Curve

SD6271
Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	V_{IN}		2.6		5.5	V
Operating Temperature Range	T_{A}	Ambient Temperature	-40		+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics $\left(V_{C C}=3.3 V, T_{A}=25^{\circ} C\right.$, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
System Supply Input						
Input Supply Range	V_{cc}		2.6		5.5	V
Under Voltage Lockout	Vuvio			2.2		V
UVLO Hysteresis				0.1		V
Quiescent Current	ICC	$\mathrm{V}_{\mathrm{FB}}=0.66 \mathrm{~V}$, No switching		0.19		mA
Average Supply Current	I_{cc}	$\mathrm{V}_{\mathrm{FB}}=0.55 \mathrm{~V}$, Switching		2.84		mA
Shutdown Supply Current	Icc	$\mathrm{V}_{\text {EN }}=\mathrm{GND}$		0.1		$\mu \mathrm{A}$
Oscillator						
Operation Frequency	Fosc	$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$	0.8	1.0	1.2	M Hz_{z}
Frequency Change with Voltage	$\triangle \mathrm{f} / \triangle \mathrm{V}$	$\mathrm{V}_{\mathrm{cc}}=2.6 \mathrm{~V}$ to 5.5 V		5		\%
Maximum Duty Cycle	T Duty			90		\%
Reference Voltage						
Reference Voltage	$V_{\text {REF }}$		0.588	0.6	0.612	V
Line Regulation		$\mathrm{V}_{\mathrm{cc}}=2.6 \mathrm{~V} \sim 5.5 \mathrm{~V}$		0.2		\% / V
Enable Control						
Enable Voltage	$V_{\text {EN }}$		0.96			V
Shutdown Voltage	$V_{\text {EN }}$				0.6	V
MOSFET						
On Resistance of Driver	R ${ }_{\text {DS (}}$ (N)	$\mathrm{LLx}=2 \mathrm{~A}$		0.2		Ω
Protection						
OCP Current	locp			2.5		A
Adjustable OCP Current	locp	With External Resistor : 19k~96k	0.5		2.5	A
OTP Temperature	Totp			+150		${ }^{\circ} \mathrm{C}$

Typical Operating Characteristics

$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Operation Frequency vs. Input Voltage

Reference Voltage vs. Input Voltage

Function Description

Operation

The SD6271 is a current mode boost converter. The constant switching frequency is 1 MHz and operates with pulse width modulation (PWM). Build-in 16V / 2.5A MOSFET provides a high output voltage. The control loop architecture is peak current mode control; therefore slope compensation circuit is added to the current signal to allow stable operation for duty cycles larger than 50%.

Soft Start Function

Soft start circuitry is integrated into SD6271 to avoid inrush current during power on. After the IC is enabled, the output of error amplifier is clamped by the internal soft-start function, which causes PWM pulse width increasing slowly and thus reducing input surge current.

Current Limit Program

A resistor between OC and GND pin programs peak switch current. The resistor value should be between 19 k and 96 k . The current limit will be set from 2.5 A to 0.5 A . Keep traces at this pin as short as possible. Do not put capacitance at this pin. To set the over current trip point according to the following equation:

$$
\mathrm{I}_{\mathrm{OCP}}=\frac{48000}{\mathrm{R} 3}
$$

Over Temperature Protection (OTP)

SD6271 will turn off the power MOSFET automatically when the internal junction temperature is over $150^{\circ} \mathrm{C}$. The power MOSFET wake up when the junction temperature drops $30^{\circ} \mathrm{C}$ under the OTP threshold temperature.

Over Voltage Protection (OVP)

In some condition, the resistive divider may be unconnected, which will cause PWM signal to operate with maximum duty cycle and output voltage is boosted higher and higher. The power MOSFET will be turned off immediately, when the output voltage exceeds the OVP threshold level. The SD6271's OVP threshold is 16 V .

Application Information

Inductor Selection

Inductance value is decided based on different condition. 3.3 uH to $4.7 \mu \mathrm{H}$ inductor value is recommended for general application circuit. There are three important inductor specifications, DC resistance, saturation current and core loss. Low DC resistance has better power efficiency. Also, it avoid inductor saturation which will cause circuit system unstable and lower core loss at 1 MHz .

Capacitor Selection

The output capacitor is required to maintain the DC voltage. Low ESR capacitors are preferred to reduce the output voltage ripple. Ceramic capacitor of X5R and X7R are recommended, which have low equivalent series resistance (ESR) and wider operation temperature range.

Diode Selection

Schottky diodes with fast recovery times and low forward voltages are recommended. Ensure the diode average and peak current rating exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed the output voltage.

Output Voltage Programming

The output voltage is set by a resistive voltage divider from the output voltage to FB. The output voltage is:

$$
\mathrm{V}_{\mathrm{OUT}}=0.6 \mathrm{~V}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Layout Considerations

1. The power traces, consisting of the GND trace, the $L X$ trace and the $V_{c c}$ trace should be kept short, direct and wide.
2. $L X, L$ and D switching node, wide and short trace to reduce EMI.
3. Place C_{IN} near V_{CC} pin as closely as possible to maintain input voltage steady and filter out the pulsing input current.
4. The resistive divider R1and R2 must be connected to FB pin directly as closely as possible.
5. FB is a sensitive node. Please keep it away from switching node, LX.
6. The GND of the IC, C_{IN} and $\mathrm{C}_{\text {OUt }}$ should be connected close together directly to a ground plane.

Suggested Layout

Typical Application

Note: Don't pull the Vout back to the SD6271's Vcc pin. When the system receives the noise, it will lead to Vout ripple too high and over the absolute maximum rating of the Vcc pin.

Package Outline

SOT23-6L

Unit: mm

Symbols	Min. (mm)	Max. (mm)
A	1.050	1.450
A1	0.050	0.150
A2	0.900	1.300
b	0.300	0.500
C	0.080	0.220
D	2.900 BSC	
E	2.800 BSC	
E1	1.600 BSC	
e	0.950 BSC	
e1	1.900 BSC	
L	0.300	0.600
L1	0.600 REF	
L2	0.250 BSC	
θ°	0°	8°
$\theta 1^{\circ}$	3°	7°
$\theta 2^{\circ}$	6°	15°

Note:

1. Package dimensions are in compliance with JEDEC outline: MO-178 AB.
2. Dimension " D " does not include molding flash, protrusions or gate burrs.
3. Dimension "E1" does not include inter-lead flash or protrusions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by SHOUDING manufacturer:

Other Similar products are found below :
PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-LW3-CW VI-L53CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20 QUINT4-CAP/24DC/5/4KJ

