GreenFET ${ }^{\text {TM }}$ High Voltage Gate Driver

Features

- $5 \mathrm{~V} \pm 5 \%$ Power supply
- SLG55021 Drain Voltage Range 1.0 V to 20 V
- Internal Gate Voltage Charge Pump
- Controlled Turn on Delay
- Controlled Load Discharge Rate
- Controlled Turn on Slew Rate
- Stable Slew Rate ($\pm 2 \%$ typ) over Temperature Range
- TDFN-8 Package

Pin Configuration

TDFN-8
(Top View)

Applications

- Power Rail Switches
- Hot Plugging Applications
- Soft Switching
- Personal computers and Servers
- Data Communications Equipment

Block Diagram

SLG55021
For N -MOSFETS with $\mathrm{V}_{\mathrm{GS}}<20 \mathrm{~V}$

Pin Description

Pin Name	Pin Number	Type	Pin Description
VCC	1	Power	Supply Voltage
ON	2	Input	CMOS Logic Level. High True
SHDN\#	3	Input	Shut Down\# - Low True Signal which immediately turns FET off
GND	4	GND	Ground
D	5	Input	FET Drain Connection
S	6	Input	Source Connection
G	7	Output	FET Gate Drive
PG	8	Output	Output CMOS Open Drain - Power Good, indicates external FET fully on

Overview

The SLG55021 N-Channel FET Gate Driver is used for controlling a delayed turn on and ramping slew rate of the source voltage on N -Channel FET switches from a CMOS logic level input. Intended as a supporting control element for switched voltage rails in energy efficient, advanced power management systems, the SLG55021 also integrates circuits to discharge opened switched voltage rails. The gate driver is available in a variety of configurations supporting a range of turn-on slew rates from $0.80 \mathrm{~V} / \mathrm{ms}$ up to $4 \mathrm{~V} / \mathrm{ms}$ which, depending on load supplying source voltages in the range of 1.0 V to 20 V results in ramp times from $200 \mu \mathrm{~s}$ up to over 20 ms (see Application Section). Delays until the ramp begins are source voltage independent and range from $250 \mu \mathrm{~s}$ to 5 ms . A power good condition is output to indicate that the ramp-up slew of the source voltage is finished. Additionally, an internal discharge circuit provides a controlled path to remove charge from open power rails. The SLG55021 gate drive is packaged in an 8 pin DFN package.

When used with external N-Channel FETs, the SLG55021 supports low transient, energy efficient switching of high current loads at source voltages ranging from 1.0 V to 20 V .

Ordering Information

Part Number	Ramp Slew Rate (Volts/ms)	Delay Time (ms)	Discharge Resistor (ohms)	Package Type
SLG55021-200010V	2.0	0.15	200	TDFN-8
SLG55021-200010VTR	2.0	0.15	200	TDFN-8 - Tape and Reel (3k units)

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V_{D} or V_{S} to GND	-0.3	40.0	V
Voltage at Logic Input pins	-0.3	6.5	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$
Operating temperature range	-55	125	${ }^{\circ} \mathrm{C}$
Junction temperature	--	150	${ }^{\circ} \mathrm{C}$
ESD Human Body Model	--	2000	V
ESD Machine Model	--	200	V

Electrical Characteristics $\left(-10^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{C}$)

Symbol	Parameter	Condition/Note	Min.	Typ.	Max.	Unit
V_{CC}	Supply Voltage		4.75	5.0	5.25	V
I_{q}	Quiescent Current	V_{G} not ramping $\mathrm{FET}=\mathrm{ON}$	--	<7	10	$\mu \mathrm{A}$
		V_{G} not ramping FET = OFF	--	0.1	1	$\mu \mathrm{A}$
V_{D}	FET Drain Voltage	SLG55021	1.0	--	20	V
$V_{G S}$	Gate-Source Voltage	SLG55021	8.0	11.5	13	V
C_{G}	FET Gate Capacitance		500	--	8000	pF
$\mathrm{T}_{\text {DELAY }}$	Ramp Delay Range	1.5ms Default, $500 \mu \mathrm{~s}$ step	0.105	0.15	0.195	ms
TSLEW	FET Turn on Slew Rate		1.4	2.0	2.6	V/ms
Idischarge	Internal Discharge Resistor	Nominal discharge time of $\sim 100 \mathrm{~ms}$ 10mA max rate	100	200	300	Ω
V_{IH}	HIGH-level input voltage	ON, SHDN\# (200mV Hysteresis)	2.4	--	5.5	V
$\mathrm{V}_{\text {IL }}$	LOW-level Input voltage	ON, SHDN\# (200mV Hysteresis)	--	--	0.4	V
V_{OH}	HIGH-level output voltage	PG Open Drain	--	--	5.5	V
$\mathrm{I}_{\text {OL_LOGIC }}$	Logic LOW level output	PG Sink Current	1	2	3	mA
IHH^{*}	SHDN\#	$\mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}$	--	--	<1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{G}} \mathrm{OL}$	Gate Drive Sink Current		400	--	--	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{G} \text { _OH }}$	Gate Drive Source Current		32	--	--	$\mu \mathrm{A}$
$\mathrm{ID}_{\text {_IH }}$	Drain Pin Current	$\mathrm{V}_{\mathrm{D}}=20 \mathrm{~V}$ in Standby	--	--	<1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S_IH }}$	Source Pin Current Quiesent	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$	--	--	<1.0	$\mu \mathrm{A}$

* If using an open drain to drive SHDN\#; pull up with $10 \mathrm{k} \Omega$ to V_{CC}

SILEGO

Application Example

In a typical application, de-asserting ON (low) or asserting the low true Shut Down signal (SHDN\#) turns off the external power N-FET. SHDN\# is provided as an asynchronous override to the ON signal. When the FET is turned off, the voltage at the load is discharged through a resistor (typically 200 ohms) internal to the SLG55021 with the discharge current limited to a maximum of 10 mA . When ON is asserted (high), gate voltage is not applied to the gate of the external power N-FET until after $\mathrm{T}_{\text {DELAY }}$ then the gate source (Vgs) voltage is ramped up to 11.5 V above the source voltage V_{S} at a slew rate determined by the internal slew rate control element internal to the SLG55021. Monotonic rise of Vs is maintained even as ID increases dramatically after the load device turn on threshold voltage is reached. After the source voltage has ramped up to its maximum steady state value, the Open Drain PG (Power Good) signal is asserted. PG may be used as the ON control of a second SLG55021 thereby providing power on sequence control of a number of switched power rails, or used in a 'wired and' with other PG signals to indicate all switched power rails are in a power good condition.

The devices will not operate if Vcc is below 3.5 V .

The waveforms shown illustrate the monotonic rise of the source voltage of a FET as gate voltage is controlled to accommodate for variations in load current as the voltage is applied.

SILEGO

Package Top Marking System Definition

XX - Part ID Field: identifies the specific device configuration
A - Assembly Code Field: Assembly Location of the device.
DD - Date Code Field: Coded date of manufacture
L - Lot Code: Designates Lot \#
R - Revision Code: Device Revision

SILEGO

Package Drawing and Dimensions

Note: Bottom side metal plate is at ground potential

SILEGO

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size	Unitsper Reel	Trailer A		Leader B		Pocket Tape(mm)		$\begin{aligned} & \text { Reel } \\ & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$
				Pockets	Length (mm)	Pockets	Length(mm)	Width	Pitch	
8TDFN	8	2x2mm	3,000	42	168	42	168	8	4	178

Tape and Reel Drawing

SECTION Y-Y

A_{0}	$2.25+/-0.1$
$B o$	$2.25+/-0.1$
K_{0}	$1.00+/-0.1$
F	$3.50+/-0.1$
P_{1}	$4.00+/-0.1$
W	$8.00+/-0.3$

I) Measured from centreline of sprocket hol to centreline of pocket.
(II) Cumulative tolerance of 10 sprocket holes is ± 0.20
(III) Measured from centreline of sprocket hole to centreline of pocket.
(IV) Other material available.

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWSE STATED

SILEGO

Revision History

Date	Version	Change
$9 / 26 / 2016$	1.02	Removed TBD values Fixed typos

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
$\underline{00053 \mathrm{P} 0231} 5695657.404 .7355 .5$ LT4936 57.904 .0755 .05882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 020740000060100564 $\underline{01312} \underline{0134220000} \underline{60713816} \underline{\mathrm{M} 15730061} \underline{61161-90} \underline{61278-0020}$ 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

