with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

General Description

The SLG59H1120V is a high-performance, self-powered $18 \mathrm{~m} \Omega$ NMOS power switch designed for all 4.5 V to 12 V power rails up to 5 A . Using a proprietary MOSFET design, the SLG59H1120V achieves a stable $18 \mathrm{~m} \Omega$ RDS $_{\text {ON }}$ across a wide input voltage range. In combining novel FET design and copper pillar interconnects, the SLG59H1120V package also exhibits a low thermal resistance for high-current operation.
Designed to operate over a $-40{ }^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$ range, the SLG59H1120V is available in a low thermal resistance, RoHS-compliant, $1.6 \times 3.0 \mathrm{~mm}$ STQFN package.

Features

- Wide Operating Input Voltage: 4.5 V to 13.2 V
- Maximum Continuous Current: 5 A
- Automatic nFET SOA Protection
- High-performance MOSFET Switch

Low $\mathrm{RDS}_{\mathrm{ON}}: 18 \mathrm{~m} \Omega$ at $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$
Low Δ RDS $_{\mathrm{ON}} / \Delta \mathrm{V}_{\mathrm{IN}}:<0.05 \mathrm{~m} \Omega / \mathrm{V}$
Low $\Delta \mathrm{RDS}_{\mathrm{ON}} / \Delta \mathrm{T}:<0.06 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$

- 3-Level, Pin-selectable V_{IN} Overvoltage Lockout
- Capacitor-adjustable Inrush Current Control
- Two stage Current Limit Protection:

Resistor-adjustable Active Current Limit
Internal Short-circuit Current limit

- Open Drain FAULT Signaling
- MOSFET Current Analog Output Monitor: $10 \mu \mathrm{~A} / \mathrm{A}$
- Fast $4 \mathrm{k} \Omega$ Output Discharge
- Pb-Free / Halogen-Free / RoHS Compliant Packaging

Pin Configuration

$1.6 \times 3.0 \mathrm{~mm}, 0.40 \mathrm{~mm}$ pitch (Top View)

Applications

- Enterprise Computing \& Telecom Equipment 5 V and 12 V Point-of-Load Power Distribution
- PCI/PCle Adapter Cards
- General-purpose High-voltage, Power-Rail Switching
- Multifunction Printers
- Fan Motor Control

Block Diagram and a 12 V / 3 A Typical Application Circuit

Pin Description

Pin \#	Pin Name	Type	Pin Description
1	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59H1120V's state machine. ON is an asserted HIGH, level-sensitive CMOS input with $\mathrm{ON} \mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and $\mathrm{ON} \mathrm{V}_{I H}>0.9 \mathrm{~V}$. As the ON pin input circuit does not have an internal pull-down resistor, connect this pin to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller - do not allow this pin to be open-circuited.
2	SELO	Input	As level-sensitive, CMOS inputs with $\mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}>1.65 \mathrm{~V}$, the SELO (LSB) and the SEL1 (MSB) pins select one of three V_{IN} overvoltage lockout thresholds. Please see the Applications Section for additional information and the Electrical Characteristics table for the $\mathrm{V}_{\text {IN }}$ overvoltage thresholds. A logic LOW on either pin is achieved by connecting the pin of interest to GND; a logic HIGH on either pin is achieved by connecting a $10 \mathrm{k} \Omega$ external resistor from the pin in question to the system's local logic supply.
3	GND	GND	Pin 3 is the main ground connection for the SLG59H1120V's internal charge pump, its gate driver and current-limit circuits as well as its internal state machine. Therefore, use a short, stout connection from Pin 3 to the system's analog or power plane.
4-8	VIN	MOSFET	VIN supplies the power for the operation of the SLG59H1120V, its internal control circuitry, and the drain terminal of the nFET power switch. With 5 pins fused together at VIN, connect a $47 \mu \mathrm{~F}$ (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VIN should be rated at 50 V or higher.
9-13	VOUT	MOSFET	Source terminal of n-channel MOSFET (5 pins fused for VOUT). Connect a $22 \mu \mathrm{~F}$ (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VOUT should be rated at 50 V or higher.
14	SEL1	Input	Please see SELO Pin Description above
15	$\overline{\text { FAULT }}$	Output	An open drain output, $\overline{\text { FAULT }}$ is asserted within $\overline{T \overline{F A U L T}_{\text {LOw }}}$ when a $V_{I N}$ overvoltage, a current-limit, or an over-temperature condition is detected. $\overline{\text { FAULT }}$ is deasserted within $T \overline{\mathrm{FAULT}}_{\mathrm{HIGH}}$ when the fault condition is removed. Connect an $100 \mathrm{k} \Omega$ external resistor from the $\overline{\text { FAULT }}$ pin to local system logic supply.
16	CAP	Output	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the $\mathrm{V}_{\text {OUT }}$ slew rate and overall turn-on time of the SLG59H1120V. For best performance, the range for $\mathrm{C}_{\text {SLEW }}$ values are $10 \mathrm{nF} \leq \mathrm{C}_{\text {SLEW }} \leq 20 \mathrm{nF}$ - please see typical characteristics for additional information. Capacitors used at the CAP pin should be rated at 10 V or higher. Please consult Applications Section on how to select $\mathrm{C}_{\text {SLEW }}$ based on $\mathrm{V}_{\text {OUT }}$ slew rate and loading conditions.
17	IOUT	Output	IOUT is the SLG59H1120V's power MOSFET load current monitor output. As an analog current output, this signal when applied to a ground-reference resistor generates a voltage proportional to the current through the n-channel MOSFET. The I IUUT transfer characteristic is typically $10 \mu \mathrm{~A} / \mathrm{A}$ with a voltage compliance range of $0.5 \mathrm{~V} \leq \mathrm{V}_{\text {IOUT }} \leq 4 \mathrm{~V}$. Optimal $\mathrm{I}_{\text {OUT }}$ linearity is exhibited for $0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{DS}} \leq 5 \mathrm{~A}$. In addition, it is recommended to bypass the IOUT pin to GND with a 0.18 nF capacitor.
18	RSET	Input	A 1\%-tolerance, metal-film resistor between $18 \mathrm{k} \Omega$ and $91 \mathrm{k} \Omega$ sets the SLG59H1120V's active current limit. A $91 \mathrm{k} \Omega$ resistor sets the SLG 59 H 1120 V 's active current limit to 1 A and a $18 \mathrm{k} \Omega$ resistor sets the active current limit to 5 A .

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Ordering Information

Part Number	Type	Production Flow
SLG59H1120V	STQFN 18L FC	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59H1120VTR	STQFN 18L FC (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$ to GND	Power Switch Input Voltage to GND	Continuous	-0.3	--	30	V
		Maximum pulsed V_{IN}, pulse width < 0.1 s	--	--	32	V
$V_{\text {OUt }}$ to GND	Power Switch Output Voltage to GND		-0.3	--	V_{IN}	V
ON, SEL[1,0], CAP, RSET, IOUT, and FAULT to GND	ON, SEL[1,0], CAP, RSET, IOUT, and FAULT Pin Voltages to GND		-0.3	--	7	V
T_{S}	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
$E S D_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
ESD ${ }_{\text {CDM }}$	ESD Protection	Charged Device Model	500	--	--	V
MSL	Moisture Sensitivity Level			1		
$\theta_{\text {JA }}$	Thermal Resistance	$1.6 \times 3.0 \mathrm{~mm}$ 18L STQFN; Determined with the device mounted onto a $1 \mathrm{in}^{2}, 1 \mathrm{oz}$. copper pad of FR-4 material	--	40	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MOSFET IDS ${ }_{\text {CONT }}$	Continuous Current from VIN to VOUT	$\mathrm{T}_{J}<150^{\circ} \mathrm{C}$	--	--	5	A
MOSFET IDS ${ }_{\text {PEAK }}$	Peak Current from VIN to VOUT	Maximum pulsed switch current, pulse width < 1 ms	--	--	6	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 13.2 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Operating Input Voltage		4.5	--	13.2	V
$\mathrm{V}_{\text {IN(OVLO }}$	$V_{\text {IN }}$ Overvoltage Lockout Threshold	$\mathrm{V}_{\mathrm{IN}} \uparrow$; SEL[1,0$]=[0,0]$	5.6	6	6.3	V
		$\mathrm{V}_{\mathrm{IN}} \uparrow$; SEL[1,0$]=[0,1]$	10.2	10.8	11.4	V
		$\mathrm{V}_{\mathrm{IN}} \uparrow$; SEL[1,0] $=[1,0]$	13.5	14.4	15.2	V
$\mathrm{V}_{\text {IN(UVLO) }}$	$V_{\text {IN }}$ Undervoltage Lockout Threshold	$V_{\text {IN }} \downarrow$	2.4	--	3.8	V
I_{Q}	Quiescent Supply Current	$\mathrm{ON}=\mathrm{HIGH} ; \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~A}$	--	0.5	0.6	mA
ISHDN	OFF Mode Supply Current	ON = LOW; $\mathrm{I}_{\text {DS }}=0 \mathrm{~A}$	--	1	3	$\mu \mathrm{A}$
$\mathrm{RDS}_{\text {ON }}$	ON Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{l}_{\mathrm{DS}}=0.1 \mathrm{~A}$	--	18	20	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{l}_{\mathrm{DS}}=0.1 \mathrm{~A}$	--	22	24	$\mathrm{m} \Omega$
MOSFET IDS	Current from VIN to VOUT	Continuous	--	--	5	A
$\mathrm{l}_{\text {LIMIT }}$	Active Current Limit, $\mathrm{I}_{\text {ACL }}$	$\mathrm{V}_{\text {OUT }}>0.5 \mathrm{~V}$; $\mathrm{R}_{\text {SET }}=30.1 \mathrm{k} \Omega$	2.8	3.2	3.6	A
	Short-circuit Current Limit, ISCL	$\mathrm{V}_{\text {OUT }}<0.5 \mathrm{~V}$	--	0.5	--	A
$\mathrm{T}_{\text {ACL }}$	Active Current Limit Response Time		--	120	--	$\mu \mathrm{s}$
$\mathrm{R}_{\text {DISCHRG }}$	Output Discharge Resistance		3.5	4.4	5.3	k Ω

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch

with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Electrical Characteristics (continued)

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 13.2 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
Iout	MOSFET Current Analog Monitor Output	$\mathrm{I}_{\mathrm{DS}}=1 \mathrm{~A}$	9.3	10	10.7	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{DS}}=3 \mathrm{~A}$	28.5	30	31.5	$\mu \mathrm{A}$
TIOUT	IOUT Response Time to Change in Main MOSFET Current	$\begin{aligned} & \mathrm{C}_{\text {IOUT }}=180 \mathrm{pF} ; \\ & \text { Step load } 0 \text { to } 2.4 \mathrm{~A} ; 0 \% \text { to } 90 \% \text { IOUT } \end{aligned}$	--	45	--	$\mu \mathrm{s}$
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	C LOAD connected from VOUT to GND	--	22	--	$\mu \mathrm{F}$
TON_Delay	ON Delay Time	$\begin{aligned} & 50 \% \text { ON to } 10 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	--	0.3	0.5	ms
		$\begin{aligned} & 50 \% \text { ON to } 10 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	--	0.7	1.2	ms
$\mathrm{T}_{\text {Total_ON }}$	Total Turn On Time	50% ON to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	--	1.4	2.1	ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	--	5	8	ms
		$10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			V/ms
$\mathrm{V}_{\text {OUT(SR) }}$	$\mathrm{V}_{\text {Out }}$ Slew Rate	$10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$; $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to 12 V ; $\mathrm{C}_{\text {SLEW }}=10 \mathrm{nF}$; $R_{\text {LOAD }}=100 \Omega, C_{\text {LOAD }}=10 \mu \mathrm{~F}$	2.7	3.2	3.9	V/ms
TOFF_Delay	OFF Delay Time	$\begin{aligned} & 50 \% \text { ON to } \mathrm{V}_{\text {OUT }} \text { Fall Start } \downarrow ; \\ & \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega \text {, No } \mathrm{C}_{\text {LOAD }} \end{aligned}$	--	15	--	$\mu \mathrm{s}$
$\mathrm{T}_{\text {FALL }}$	$\mathrm{V}_{\text {OUt }}$ Fall Time	$\begin{aligned} & 90 \% \mathrm{~V}_{\text {OUT }} \text { to } 10 \% \mathrm{~V}_{\text {OUT; }} \\ & \mathrm{ON}=\mathrm{HIGH} \text {-to-LOW; } \\ & \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V} \text { to } 12 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \text { No } \mathrm{C}_{\text {LOAD }} \end{aligned}$	10.4	12.7	14.3	$\mu \mathrm{s}$
T $\overline{\text { FAULT }}_{\text {Low }}$	$\overline{\text { FAULT Assertion Time }}$	$\begin{aligned} & \text { Abnormal Step Load Currentevent to } \\ & \text { FAULT } \downarrow ; I_{A C L}=1 \mathrm{~A} ; \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega ; \text { switch in } 10 \Omega \text { load } \end{aligned}$	--	80	--	$\mu \mathrm{s}$
T $\overline{\text { FAULT }}_{\text {HIGH }}$	$\overline{\text { FAULT }}$ De-assertion Time	Delay to $\overline{\mathrm{FAULT}} \uparrow$ after fault condition is removed; $\mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$; $R_{\text {SET }}=91 \mathrm{k} \Omega$; switch out 10Ω load	--	180	--	$\mu \mathrm{s}$
$\overline{\text { FAULT }}_{\text {VOL }}$	$\overline{\text { FAULT Output Low Voltage }}$	$\mathrm{l}_{\overline{\text { FAULT }}}=1 \mathrm{~mA}$	--	0.2	--	V
ON_V ${ }_{\text {IH }}$	ON Pin Input High Voltage		0.9	--	5	V
ON_V ${ }_{\text {IL }}$	ON Pin Input Low Voltage		-0.3	0	0.3	V
SEL[1,0]_V $\mathrm{V}_{\text {IH }}$	SEL[1,0] pins Input High Voltage		1.65	--	4.5	V
SEL[1,0]_V ${ }_{\text {IL }}$	SEL[1,0] pins Input Low Voltage		-0.3	--	0.3	V
ION(Leakage)	ON Pin Leakage Current	$1 \mathrm{~V} \leq \mathrm{ON} \leq 5 \mathrm{~V}$ or $\mathrm{ON}=\mathrm{GND}$	--	--	1	$\mu \mathrm{A}$
THERM ${ }_{\text {ON }}$	Thermal Protection Shutdown Threshold		--	125	--	${ }^{\circ} \mathrm{C}$
THERM $_{\text {OFF }}$	Thermal Protection Restart Threshold		--	100	--	${ }^{\circ} \mathrm{C}$

Notes:

1. Refer to typical Timing Parameter vs. $\mathrm{C}_{\text {SLEW }}$ performance charts for additional information when available.

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
$\mathrm{T}_{\text {Total_ON }}, \mathrm{T}_{\text {ON_Delay }}$ and Slew Rate Measurement

*Rise and Fall Times of the ON Signal are 100 ns

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Typical Performance Characteristics
RDS $_{\mathrm{ON}}$ vs. Temperature, and V_{IN}

$\mathrm{I}_{\mathrm{ACL}}$ vs. Temperature and $\mathrm{R}_{\mathrm{SET}}$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
$I_{\text {ACL }}$ vs. $R_{\text {SET }}$ and $V_{\text {IN }}$

Iout vs. MOSFET IDS and $\mathrm{V}_{\text {IN }}$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Iout vs. Temperature and MOSFET IDS

$\mathrm{V}_{\text {OUT }}$ Slew Rate vs. Temperature, $\mathrm{V}_{\text {IN }}$, and $\mathrm{C}_{\text {SLEW }}$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
$\mathrm{T}_{\text {Total_ON }}$ vs. $\mathrm{C}_{\text {SLEW }}, \mathrm{V}_{\text {IN }}$, and Temperature

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Timing Diagram - Basic Operation including Active Current Limit Protection

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Timing Diagram - Active Current Limit \& Thermal Protection Operation

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Timing Diagram - Basic Operation including Active Current + Internal FET SOA Protection

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

SLG59H1120V Application Diagram

Figure 1. Test setup Application Diagram

Typical Turn-on Waveforms

Figure 2. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LOAD}}=100 \Omega$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 3. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=18 \mathrm{nF}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$ Typical Turn-off Waveforms

Figure 4. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}$, no $\mathrm{C}_{\text {LOAD }}, \mathrm{R}_{\text {LOAD }}=100 \Omega$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 5. Typical Turn OFF operation waveform for $V_{I N}=4.5 \mathrm{~V}, \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$ Typical ACL Operation Waveforms

Figure 6. Typical ACL operation waveform for $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 7. Typical $A C L$ operation waveform for $V_{I N}=9 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$

Typical $\overline{\text { FAULT }}$ Operation Waveforms

Figure 8. Typical $\overline{\text { FAULT }}$ assertion waveform for $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$, switch on 3.3Ω load

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 9. Typical $\overline{\text { FAULT }}$ de-assertion waveform for $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}$, $R_{\text {SET }}=91 \mathrm{k} \Omega$, switch out 3.3Ω load

Applications Information

HFET1 Safe Operating Area Explained

Dialog's HFET1 integrated power controllers incorporate a number of internal protection features that prevents them from damaging themselves or any other circuit or subcircuit downstream of them. One particular protection feature is their Safe Operation Area (SOA) protection. SOA protection is automatically activated under overpower and, in some cases, under overcurrent conditions. Overpower SOA is activated if package power dissipation exceeds an internal 5W threshold longer than 2.5 ms . HFET1 devices will quickly switch off (open circuit) upon overpower detection and automatically resume (close) nominal operation once overpower condition no longer exists.

One possible way to have an overpower condition trigger SOA protection is when HFET1 products are enabled into heavy output resistive loads and/or into large load capacitors. It is under these conditions to follow carefully the "Safe Start-up Loading" guidance in the Applications section of the datasheet. During an overcurrent condition, HFET1 devices will try to limit the output current to the level set by the external $\mathrm{R}_{\mathrm{SET}}$ resistor. Limiting the output current, however, causes an increased voltage drop across the FET's channel because the FET's RDS $_{\text {ON }}$ increased as well. Since the FET's RDS ${ }_{O N}$ is larger, package power dissipation also increases. If the resultant increase in package power dissipation is higher/equal than 5 W for longer than 2.5 ms , internal SOA protection will be triggered and the FET will open circuit (switch off). Every time SOA protection is triggered, all HFET1 devices will automatically attempt to resume nominal operation after 160 ms .

Safe Start-up Condition

SLG59H1120V has built-in protection to prevent over-heating during start-up into a heavy load. Overloading the VOUT pin with a capacitor and a resistor may result in non-monotonic $\mathrm{V}_{\text {OUT }}$ ramping. In general, under light loading on VOUT, $\mathrm{V}_{\text {OUT }}$ ramping can be controlled with $\mathrm{C}_{\text {SLEW }}$ value. The following equation serves as a guide:

$$
\mathrm{C}_{\text {SLEW }}=\frac{\mathrm{T}_{\text {RISE }}}{\mathrm{V}_{\text {IN }}} \times 4.9 \mu \mathrm{~A} \times \frac{20}{3}
$$

where
$\mathrm{T}_{\text {RISE }}=$ Total rise time from $10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }}$
$\mathrm{V}_{\text {IN }}=$ Input Voltage
$\mathrm{C}_{\text {SLEW }}=$ Capacitor value for CAP pin
When capacitor and resistor loading on VOUT during start up, the following tables will ensure $\mathrm{V}_{\text {OUT }}$ ramping is monotonic without triggering internal protection:

Safe Start-up Loading for $\mathbf{V}_{\mathbf{I N}}=\mathbf{1 2} \mathbf{V}$ (Monotonic Ramp)				
Slew Rate (V/ms)	$\mathbf{C}_{\mathbf{S L E W}}(\mathbf{n F})^{\mathbf{2}}$	$\mathbf{C}_{\text {LOAD }}(\boldsymbol{\mu F})$	$\mathbf{R}_{\text {LOAD }}(\mathbf{\Omega})$	
1	33.3	500	20	
2	16.7	250	20	
3	11.1	160	20	
4	8.3	120	20	
5	6.7	100	20	

Note 2: Select the closest-value tolerance capacitor.

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Setting the SLG59H1120V's Active Current Limit

$\mathbf{R}_{\mathbf{S E T}}(\mathbf{k} \boldsymbol{\Omega})$	Active Current Limit $\mathbf{(A)}{ }^{\mathbf{3}}$
91	1
45	2
30	3
18	5

Note 3: Active Current Limit accuracy is $\pm 15 \%$ over voltage range and over temperature range.

Setting the SLG59H1120V's Input Overvoltage Lockout Threshold

As shown in the table below, SEL[1,0] selects the V_{IN} overvoltage threshold at which the SLG59H1120V's internal state machine will turn OFF (open circuit) the power MOSFET if $\mathrm{V}_{\text {IN }}$ exceeds the selected threshold.

SEL1	SEL0	$\mathbf{V}_{\text {IN(OVLO) }}$ (Typ)
0	0	6 V
0	1	10.8 V
1	0	14.4 V
1	1	Reserved

With an activated $\operatorname{SLG59H} 1120 \mathrm{~V}(\mathrm{ON}=\mathrm{HIGH})$ and at any time $\mathrm{V}_{\mathbb{I N}}$ crosses the programmed $\mathrm{V}_{\mathbb{I N}}$ overvoltage threshold, the state machine opens the power switch and asserts the $\overline{\mathrm{FAULT}}$ pin within $\mathrm{T} \overline{\mathrm{FAULT}}_{\text {LOW }}$.

In applications with a deactivated or inactive $\operatorname{SLG59H} 1120 \mathrm{~V}\left(\mathrm{~V}_{\mathbb{I N}}>\mathrm{V}_{\mathbb{I N}(\mathrm{UVLO})}\right.$ and $\left.\mathrm{ON}=\mathrm{LOW}\right)$ and if the applied $\mathrm{V}_{I N}$ is higher than the programmed $\mathrm{V}_{\mathrm{IN}(\mathrm{OVLO})}$ threshold, the SLG59H1120V's state machine will keep the power switch open circuited if the ON pin is toggled LOW-to-HIGH. In these cases, the FAULT pin will also be asserted within $\mathrm{TFAULT}_{\text {Low }}$ and will remain asserted until $V_{I N}$ resumes nominal, steady-state operation.

In all cases, the $\mathrm{SLG59H} 1120 \mathrm{~V}^{\prime} \mathrm{s} \mathrm{V}_{\mathbb{I N}}$ undervoltage lockout threshold is fixed at $\mathrm{V}_{\mathrm{IN}(\text { (UVLO }}$.

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Power Dissipation
The junction temperature of the SLG59H1120V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG59H1120V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}=\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

where:
PD = Power dissipation, in Watts (W)
RDS $_{\text {ON }}=$ Power MOSFET ON resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
and

$$
T_{J}=P D \times \theta_{J A}+T_{A}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Junction temperature, in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
In current-limit mode, the SLG59H1120V's power dissipation can be calculated by taking into account the voltage drop across the power switch $\left(\mathrm{V}_{\mathbb{I}}-\mathrm{V}_{\mathrm{OUT}}\right)$ and the magnitude of the output current in current-limit mode $\left(\mathrm{l}_{\mathrm{ACL}}\right)$:

$$
\begin{gathered}
\mathrm{PD}=\left(\mathrm{V}_{\mathrm{IN}^{-}} \mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{I}_{\mathrm{ACL}} \text { or } \\
\mathrm{PD}=\left(\mathrm{V}_{\mathrm{IN}}-\left(\mathrm{R}_{\mathrm{LOAD}} \times \mathrm{I}_{\mathrm{ACL}}\right)\right) \times \mathrm{I}_{\mathrm{ACL}}
\end{gathered}
$$

where:
PD = Power dissipation, in Watts (W)
$\mathrm{V}_{\text {IN }}=$ Input Voltage, in Volts (V)
$R_{\text {LOAD }}=$ Load Resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{ACL}}=$ Output limited current, in Amps (A)
$V_{\text {OUT }}=R_{\text {LOAD }} \times I_{\text {ACL }}$

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Layout Guidelines:

1. Since the VIN and VOUT pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with an absolute minimum widths of 15 mils $(0.381 \mathrm{~mm})$ per Ampere. A representative layout, shown in Figure 10, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
2. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input $\mathrm{C}_{\mathbb{I N}}$ and output C LOAD low-ESR capacitors as close as possible to the SLG59H1120V's VIN and VOUT pins;
3. The GND pin should be connected to system analog or power ground plane.
4. 2 oz . copper is recommended for high current operation.

SLG59H1120V Evaluation Board:

A HFET1 Evaluation Board for SLG59H1120V is designed according to the statements above and is illustrated on Figure 10. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS $_{\mathrm{ON}}$ evaluation.

Figure 10. SLG59H1120V Evaluation Board

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 11. SLG59H1120V Evaluation Board Connection Circuit

Basic Test Setup and Connections

Figure 12. SLG59H1120V Evaluation Board Connection Circuit

EVB Configuration

1. Based on $\mathrm{V}_{\mathbb{I N}}$ voltage, set SEL0, SEL1 to GND or 5 V to configure OVLO;
2. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
3. Turn on Power Supply and set desired V_{IN} from $4.5 \mathrm{~V} . . .12 \mathrm{~V}$ range;

4 .Toggle the ON signal High or Low to observe SLG59H1120V operation.

> 1120V - Part ID Field

WW - Date Code Field ${ }^{1}$
NNN - Lot Traceability Code Field ${ }^{1}$
A - Assembly Site Code Field ${ }^{2}$
RR - Part Revision Code Field ${ }^{2}$
Note 1: Each character in code field can be alphanumeric A-Z and 0-9
Note 2: Character in code field can be alphabetic A-Z

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Package Drawing and Dimensions
18 Lead TQFN Package $1.6 \times 3 \mathrm{~mm}$ (Fused Lead) JEDEC MO-220, Variation WCEE

Top View

Side View

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.05	E	1.55	1.60	1.65
A2	0.10	0.15	0.20	L	0.25	0.30	0.35
b	0.13	0.18	0.23	L1	0.64	0.69	0.74
e	0.40 BSC				L2	0.15	0.20
L3	2.34	2.39	2.44	L4	0.13	0.18	0.23

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
SLG59H1120V 18-pin STQFN PCB Landing Pattern

Exposed Pad
(PKG face down)

18

\square Recommended Land Pattern (PKG face down)

Note: All dimensions shown in micrometers ($\mu \mathrm{m}$)

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		Reel \& Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
$\begin{gathered} \hline \text { STQFN } \\ 18 \mathrm{~L} \\ 1.6 \times 3 \mathrm{~mm} \\ 0.4 \mathrm{FFC} \\ \text { Green } \end{gathered}$	18	$1.6 \times 3 \times 0.55$	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
$\begin{aligned} & \hline \text { STQFN 18L } \\ & 1.6 \times 3 \mathrm{~mm} \\ & 0.4 \mathrm{FFC} \\ & \text { Green } \end{aligned}$	1.78	3.18	0.76	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $2.64 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

A $12 \mathrm{~V}, 18 \mathrm{~m} \Omega, 5$ A Integrated Power Switch
with $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Revision History

Date	Version	Change
$12 / 12 / 2018$	1.02	Updated style and formatting Updated Charts Updated Scopeshots Added Layout Guidelines Fixed typos
$10 / 03 / 2016$	1.01	Fixed Chart on Page 6
$8 / 25 / 2016$	1.00	Production Release

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

