An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch

General Description

The SLG59M1563V is a $22.5 \mathrm{~m} \Omega$, 2.5 A single-channel load switch that is able to switch 1 V to 5 V power rails. The product is packaged in an ultra-small $1.0 \times 1.6 \mathrm{~mm}$ package.

Features

- $1.0 \times 1.6 \times 0.55 \mathrm{~mm}$ STDFN 8 L package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- $22.5 \mathrm{~m} \Omega \mathrm{RDS}_{\text {ON }}$ while supporting 2.5 A
- Power Good Output
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Operating Voltage: 1.5 V to 5.5 V

Pin Configuration

8-pin FC-TDFN
(Top View)

Applications

- Notebook Power Rail Switching
- Tablet Power Rail Switching
- Smartphone Power Rail Switching

Block Diagram

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Pin Description

Pin \#	Pin Name	Type	Pin Description
1	VDD	Power	VDD supplies the power for the operation of the power switch and internal control circuitry. Bypass the VDD pin to GND with a $0.1 \mu \mathrm{~F}$ (or larger) capacitor.
2	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59M1563V's state machine. ON is a CMOS input with $\mathrm{ON}, \mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and $\mathrm{ON} \mathrm{V}_{\mathrm{IH}}>0.85 \mathrm{~V}$ thresholds. While there is an internal pull-down circuit to GND ($\sim 4 \mathrm{M} \Omega$), connect this pin directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller.
3, 4	D	MOSFET	Drain terminal connection of the n-channel MOSFET (2 pins fused for D). Connect at least a low-ESR $0.1 \mu \mathrm{~F}$ capacitor from this pin to ground. Capacitors used at D should be rated at 10 V or higher.
5, 6	S	MOSFET	Source terminal connection of the n-channel MOSFET (2 pins fused for S). Connect a low-ESR capacitor from this pin to ground and consult the Electrical Characteristics table for recommended $C_{\text {LOAD }}$ range. Capacitors used at S should be rated at 10 V or higher.
7	PG	Output	A push pull output. PG is asserted HIGH when $\mathrm{V}_{S}>95 \%$ of V_{D}.
8	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Type	Production Flow
SLG59M1563V	STDFN 8L	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59M1563VTR	STDFN 8L (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
V_{DD}	Power Supply		--	--	7	V
$\mathrm{~T}_{\mathrm{S}}$	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
$\mathrm{ESD}_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
$\mathrm{W}_{\text {DIS }}$	Package Power Dissipation		--	--	0.4	W
MOSFET IDS	Peak Current from Drain to Source	For no more than 1 ms with 1\% duty cycle	--	--	3.5	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$V_{D D}$	Power Supply Voltage	$-40{ }^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$	1.5	--	5.5	V
$I_{\text {DD }}$	Power Supply Current (PIN 1)	when OFF	--	--	1	$\mu \mathrm{A}$
		when ON, No load	--	14	30	$\mu \mathrm{A}$
$\mathrm{RDS}_{\text {ON }}$	ON Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	22.5	25	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	25.6	30	$\mathrm{m} \Omega$
MOSFET IDS	Current from D to S	Continuous	--	--	2.5	A
$\mathrm{I}_{\text {ReVERSE }}$	MOSFET Reverse Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{ON}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	--	0.04	0.55	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{ON}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	--	0.26	1.3	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{ON}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	--	0.31	9.70	$\mu \mathrm{A}$
V_{D}	Drain Voltage		1.0	--	V_{DD}	V
TON_Delay	ON Delay Time	50\% ON to V_{S} Ramp Start	--	300	500	$\mu \mathrm{s}$
$\mathrm{T}_{\text {Total_ON }}$	Total Turn On Time	50% ON to $90 \% V_{S}$; Example: $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$, $C_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=20 \Omega$	2.1	2.6	3.1	ms
$\mathrm{V}_{\mathrm{S}(\mathrm{SR})}$	Slew Rate	$\begin{aligned} & 10 \% V_{S} \text { to } 90 \% V_{S} ; \\ & \text { Example: }^{2}=V_{D D}=5 \mathrm{~V}, \\ & C_{\text {LOAD }}=10 \mu F, R_{\text {LOAD }}=20 \Omega \end{aligned}$	1.4	1.95	2.2	V / ms
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from S to GND	--	--	500	$\mu \mathrm{F}$
ON_V ${ }_{\text {IH }}$	High Input Voltage on ON pin		0.85	--	V_{DD}	V
ON_V ${ }_{\text {IL }}$	Low Input Voltage on ON pin		-0.3	0	0.3	V
V_{OL}	Low Output Voltage on PG pin	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=-0.1 \mathrm{~mA}$	--	--	0.4	V
V_{OH}	High Output Voltage on PG pin	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	--	V_{DD}	V
THERM ${ }_{\text {ON }}$	Thermal shutoff turn-on temperature		--	125	--	${ }^{\circ} \mathrm{C}$
THERM ${ }_{\text {OFF }}$	Thermal shutoff turn-off temperature		--	100	--	${ }^{\circ} \mathrm{C}$
THERM ${ }_{\text {TIME }}$	Thermal shutoff time		--	--	1	ms
TOFF_Delay	OFF Delay Time	50% ON to V_{S} Fall Start; $V_{D D}=V_{D}=5 \mathrm{~V} ; R_{\text {LOAD }}=20 \Omega$; no $C_{\text {LOAD }}$	--	8	--	$\mu \mathrm{s}$

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Electrical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
PG $_{\text {TRIGGER }}$	Power Good Trigger Level	$\mathrm{V}_{\mathrm{S}} \%$ of V_{D}	--	95	--	$\%$

$\mathrm{T}_{\text {ON_Delay }}, \mathrm{V}_{\mathrm{S}(\mathrm{SR})}$, and $\mathrm{T}_{\text {Total_ON }}$ Timing Details

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Typical Performance Characteristics
RDS $_{\mathrm{ON}}$ vs. Temperature, V_{DD}, and V_{IN}

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

SLG59M1563V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V . Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If $V_{D D}$ and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A $10 \mu \mathrm{~F}$
$\mathrm{C}_{\text {LOAD }}$ will prevent glitches for rise times of V_{DD} and V_{D} less than 2 ms .
If the $O N$ pin is toggled HIGH before $V_{D D}$ and V_{D} have reached their steady-state values, the IPS timing parameters may differ from datasheet specifications.

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Layout Guidelines:

1. The VDD pin needs a $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ external capacitors to smooth pulses from the power supply. Locate these capacitors as close as possible to the SLG59M1563V's PIN1.
2. Since the D and S pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
3. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output $C_{\text {LOAD }}$ low-ESR capacitors as close as possible to the SLG59M1563V's D and S pins;
4. The GND pin should be connected to system analog or power ground plane.

SLG59M1563V Evaluation Board:

A GFET3 Evaluation Board for SLG59M1563V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS $_{\mathrm{ON}}$ evaluation.

Figure 1. SLG59M1563V Evaluation Board.

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Figure 2. SLG59M1563V Evaluation Board Connection Circuit.

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Basic Test Setup and Connections

Figure 3. Typical connections for GFET3 Evaluation.

EVB Configuration

1. Connect oscilloscope probes to $\mathrm{D} / \mathrm{VIN}, \mathrm{S} / \mathrm{VOUT}, \mathrm{ON}$, etc.;
2.Turn on Power Supply 1 and set desired V_{DD} from 1.5 V ...5.5 V range;
3.Turn on Power Supply 2 and set desired V_{D} from 1 V ... V_{DD} range;
4.Toggle the ON signal High or Low to observe SLG59M1563V operation.

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch
with Reverse Blocking
Package Top Marking System Definition

Each character in Serial Number field can be alphanumeric A-Z

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Package Drawing and Dimensions
8 Lead STDFN Package 1.0×1.6 mm (Fused Lead) IC Net Weight: 0.0025 g

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max		
A	0.50	0.55	0.60	D	1.55	1.60	1.65		
A1	0.005	-	0.060	E	0.95	1.00	1.05		
A2	0.10	0.15	0.20	L	0.35	0.40	0.45		
b	0.13	0.18	0.23	L1	0.10	0.15	0.20		
e	0.40 BSC				S	0.2 REF			

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		 Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
$\begin{array}{\|c\|} \hline \text { STDFN 8L } \\ 1 \times 1.6 \mathrm{~mm} \\ 0.4 \mathrm{FFC} \\ \text { Green } \end{array}$	8	$1.0 \times 1.6 \times 0.55$	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	$\begin{aligned} & \text { Pocket BTM } \\ & \text { Width } \end{aligned}$	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
STDFN 8L 1x1.6mm 0.4P FC Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.88 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

An Ultra-small, $22.5 \mathrm{~m} \Omega$, 2.5 A Load Switch with Reverse Blocking

Revision History

Date	Version	Change
$1 / 11 / 2019$	1.03	Updated Style and formatting Added Chart Added Layout Guidelines Fixed typos
$9 / 13 / 2016$	1.02	Added Power Up/Down Sequencing Considerations Updated text and parameter names for clarity
$3 / 9 / 2016$	1.01	Updated IDSIkg conditions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

