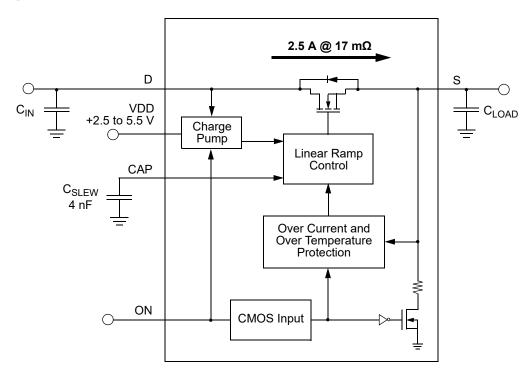

General Description

The SLG59M1598V is a 17 m Ω 2.5 A single-channel load switch that is able to switch 0.85 V to 5.5 V power rails. The product is packaged in an ultra-small 1.0 x 1.6 mm package.

Features

- 1.0 x 1.6 x 0.55 mm STDFN package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- · User selectable ramp rate with external capacitor
- 17 m Ω RDS_{ON} while supporting 2.5 A
- · Discharges load when off
- · Two Over Current Protection Modes
 - · Short Circuit Current Limit
 - · Active Current Limit
- · Over Temperature Protection
- · Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: -40 °C to 85°C
- · Operating Voltage: 2.5 V to 5.5 V


Pin Configuration

Applications

- · Notebook Power Rail Switching
- Tablet Power Rail Switching
- · Smartphone Power Rail Switching

Block Diagram

Pin Description

Pin#	Pin Name	Туре	Pin Description
1	VDD	PWR	VDD supplies the power for the operation of the power switch and internal control circuitry. Bypass the VDD pin to GND with a 0.1 μ F (or larger) capacitor.
2	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59M1598V's state machine. ON is a CMOS input with ON_V $_{IL}$ < 0.3 V and ON_V $_{IH}$ > 0.85 V thresholds. While there is an internal pull-down circuit to GND (~4 M Ω), connect this pin directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller.
3, 4	D	MOSFET	Drain terminal connection of the n-channel MOSFET (2 pins fused for D). Connect at least a low-ESR 0.1 μ F capacitor from this pin to ground. Capacitors used at D should be rated at 10 V or higher.
5, 6	0	MOSFET	Source terminal connection of the n-channel MOSFET (2 pins fused for S). Connect a low-ESR capacitor from this pin to ground and consult the Electrical Characteristics table for recommended C _{LOAD} range. Capacitors used at S should be rated at 10 V or higher.
7	CAP	Input	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the V_S slew rate and overall turn-on time of the SLG59M1598V. For best performance C_{SLEW} value should be \geq 1.5 nF and voltage level should be rated at 10 V or higher.
8	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Туре	Production Flow
SLG59M1598V	STDFN 8L	Industrial, -40 °C to 85 °C
SLG59M1598VTR	STDFN 8L (Tape and Reel)	Industrial, -40 °C to 85 °C

Absolute Maximum Ratings

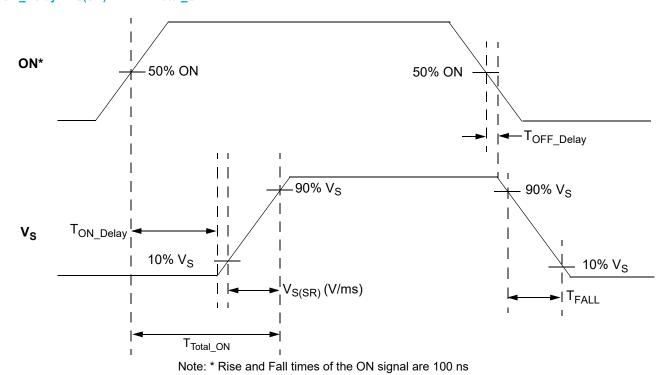
Parameter	Description	scription Conditions				Unit
V _{DD}	Power Supply		-0.3		7	V
V _D to GND	Power Switch Input Voltage to GND		-0.3		V_{DD}	V
V _S to GND	Power Switch Output Voltage to GND		-0.3		V_{D}	V
ON and CAP to GND	ON and CAP Pin Voltages to GND		-0.3	-	V_{DD}	V
T _S	Storage Temperature		-65	-	150	°C
ESD _{HBM}	ESD Protection	Human Body Model	8000			V
$\theta_{\sf JA}$	Thermal Resistance	1 x 1.6 mm, 8L STDFN; Determined using 1 in ² , 1 oz. copper pads under each D and S terminals and FR4 pcb material		72		°C/W
MOSFET IDS _{PK}	Peak Current from Drain to Source	For no more than 1 ms with 1% duty cycle		1	3.5	Α

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

 T_A = -40 °C to 85 °C unless otherwise noted.

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage	-40 °C to 85 °C	2.5		5.5	V
	Power Supply Current (PIN 1)	when OFF			1	μA
I _{DD}	Power Supply Current (PIN 1)		70	100	μA	
		T _A = 25 °C, I _{DS} = 100 mA		17	19	mΩ
RDS _{ON}	ON Resistance	T _A = 70 °C, I _{DS} = 100 mA		18.5	20	mΩ
		T _A = 85 °C, I _{DS} = 100 mA		22	24	mΩ
MOSFET IDS	Current from D to S	Continuous			2.5	Α
V_D	Drain Voltage		0.85		V_{DD}	V
T _{ON_Delay}	ON Delay Time	50% ON to V_S Ramp Start; C _{LOAD} = 10 μF, R _{LOAD} = 20 Ω		300	500	μs
		50% ON to 90% V _S	Set by External C _{SLEW} 1			ms
T _{Total_ON}	Total Turn On Time	Example: C_{SLEW} = 4 nF, V_{DD} = V_{D} = 5 V, C_{LOAD} = 10 μ F, R_{LOAD} = 20 Ω		1.96		ms
		10% V _S to 90% V _S	Set by	External	C _{SLEW} 1	V/ms
V _{S(SR)}	Slew Rate	Example: C_{SLEW} = 4 nF, V_{DD} = V_{D} = 5 V, C_{LOAD} = 10 μ F, R_{LOAD} = 20 Ω		3.0		V/ms
C _{LOAD}	Output Load Capacitance	C _{LOAD} connected from S to GND			500	μF
R _{DISCHRGE}	Discharge Resistance		100	150	300	Ω
ON_V _{IH}	High Input Voltage on ON pin		0.85		V_{DD}	V
ON_V _{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V

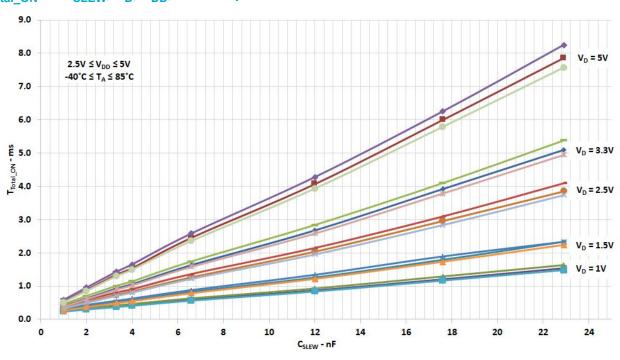

Electrical Characteristics (continued)

 T_A = -40 °C to 85 °C unless otherwise noted.

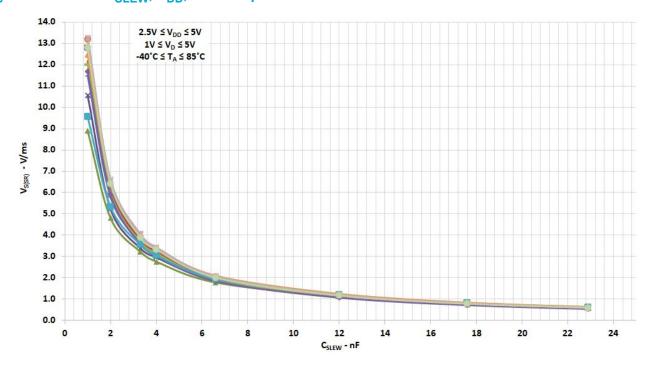
Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
	Active Current Limit, I _{ACL}	MOSFET will automatically limit current when $V_S > 250 \text{ mV}$		3.7		Α
LIMIT	Short Circuit Current Limit, I _{SCL}	MOSFET will automatically limit current when $V_{\rm S}$ < 250 mV		0.5		Α
THERMON	Thermal shutoff turn-on temperature			125		°C
THERMOFF	Thermal shutoff turn-off temperature			100		°C
THERM _{TIME}	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to V_S Fall Start; V_{DD} = V_D = 5 V; R_{LOAD} = 20 Ω , no C_{LOAD}		8		μs
T _{FALL}	V _S Fall Time	90% V_S to 10% V_S , $V_{DD} = V_D = 5 V$ R _{LOAD} = 20 Ω, no C _{LOAD}		3.8		μs

Notes:

$T_{ON_Delay},\,V_{S(SR)},\,and\,T_{Total_ON}$ Timing Details



^{1.} Refer to typical timing parameter vs. C_{SLEW} performance charts for additional information when available.



Typical Performance Characteristics

$\mathbf{T}_{\mathsf{Total_ON}}\,\mathsf{vs}\;\mathbf{C}_{\mathsf{SLEW}},\,\mathbf{V}_{\mathsf{D}},\,\mathbf{V}_{\mathsf{DD}},\,\mathsf{and}\;\mathsf{Temperature}$

V_S Slew Rate vs. C_{SLEW}, V_{DD}, and Temperature

SLG59M1598V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V. Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_{D} less than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_{D} have reached their steady-state values, the IPS timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG59M1598V Current Limiting Operation

The SLG59M1598V has two types of current limiting triggered by the output S pin voltage.

1. Standard Current Limiting Mode (with Thermal Shutdown Protection)

When the V_S voltage > 250 mV, the output current is initially limited to the Active Current Limit (I_{ACL}) specification listed in the Electrical Characteristics table. The ACL monitor's response time is very fast and is triggered within a few microseconds to sudden (transient) changes in load current. When a load current overload is detected, the ACL monitor increases the FET resistance to keep the current from exceeding the power switch's I_{ACL} threshold.

However, if a load-current overload condition persists where the die temperature rises because of the increased FET resistance, the power switch's internal Thermal Shutdown Protection circuit can be activated. If the die temperature exceeds the listed THERM_{ON} specification, the FET is shut OFF completely, thereby allowing the die to cool. When the die cools to the listed THERM_{OFF} temperature threshold, the FET is allowed to turn back on. This process may repeat as long as the output current overload condition persists.

2. Short Circuit Current Limiting Mode (with Thermal Shutdown Protection)

When the V_S voltage < 250 mV (which is the case with a hard short, such as a solder bridge on the power rail), the power switch's internal Short-circuit Current Limit (SCL) monitor limits the FET current to approximately 500 mA (the I_{SCL} threshold). While the internal Shutdown Protection circuit remains enabled and since the I_{SCL} threshold is much lower than the I_{ACL} threshold, thermal shutdown protection may become activated only at higher ambient temperatures.

Power Dissipation

The junction temperature of the SLG59M1598V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG59M1598V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD = RDS_{ON} \times I_{DS}^{2}$$

where:

PD = Power dissipation, in Watts (W) RDS_{ON} = Power MOSFET ON resistance, in Ohms (Ω) I_{DS} = Output current, in Amps (A)

and

$$T_J = PD \times \theta_{JA} + T_A$$

where:

 T_J = Junction temperature, in Celsius degrees (°C) θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) T_A = Ambient temperature, in Celsius degrees (°C)

During active current-limit operation, the SLG59M1598V's power dissipation can be calculated by taking into account the voltage drop across the power switch $(V_D - V_S)$ and the magnitude of the output current in active current-limit operation (I_{ACL}) :

$$PD = (V_D - V_S) \times I_{ACL} \text{ or}$$

$$PD = (V_D - (R_{LOAD} \times I_{ACL})) \times I_{ACL}$$

where:

PD = Power dissipation, in Watts (W) V_D = Input Voltage, in Volts (V) R_{LOAD} = Load Resistance, in Ohms (Ω) I_{ACL} = Output limited current, in Amps (A) V_S = R_{LOAD} x I_{ACL}

For more information on Dialog GreenFET3 integrated power switch features, please visit our <u>Documents</u> search page at our website and see <u>App Note "AN-1068 GreenFET3 Integrated Power Switch Basics"</u>.

Layout Guidelines:

- 1.The VDD pin needs a 0.1 μF and 10 μF external capacitors to smooth pulses from the power supply. Locate these capacitors as close as possible to the SLG59M1598V's PIN1.
- 2. Since the D and S pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
- To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output C_{LOAD} low-ESR capacitors as close as possible to the SLG59M1598V's D and S pins;
- 4. The GND pin should be connected to system analog or power ground plane.
- 5. 2 oz. copper is recommended for high current operation.

SLG59M1598V Evaluation Board:

A GFET3 Evaluation Board for SLG59M1598V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS_{ON} evaluation.

Please solder your SLG59M1598V here

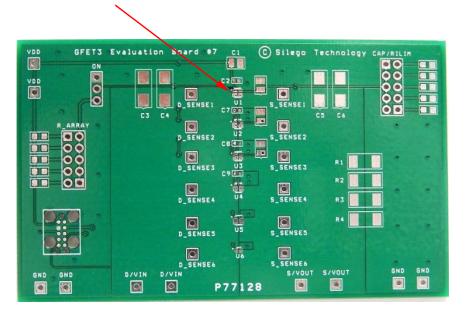


Figure 1. SLG59M1598V Evaluation Board.

dialog

An Ultra-small, 17 mΩ, 2.5 A Load Switch with Discharge

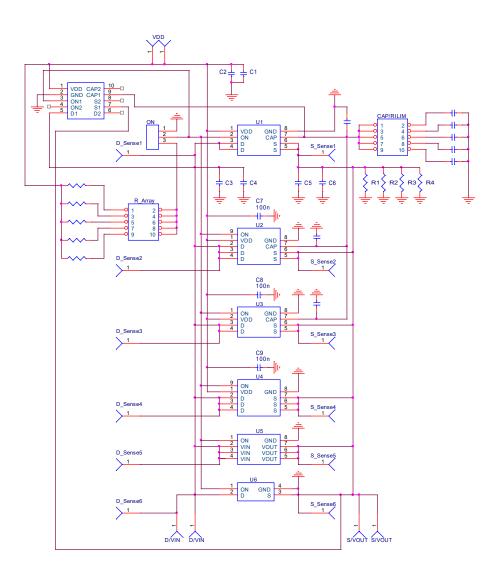
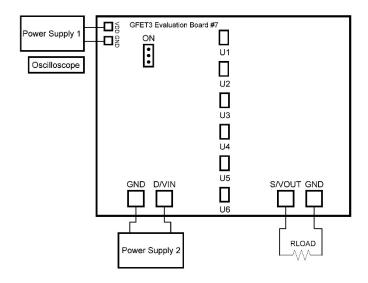
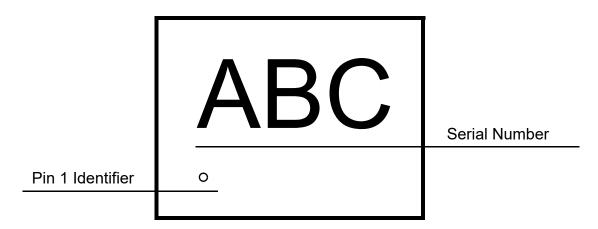


Figure 2. SLG59M1598V Evaluation Board Connection Circuit.

Basic Test Setup and Connections

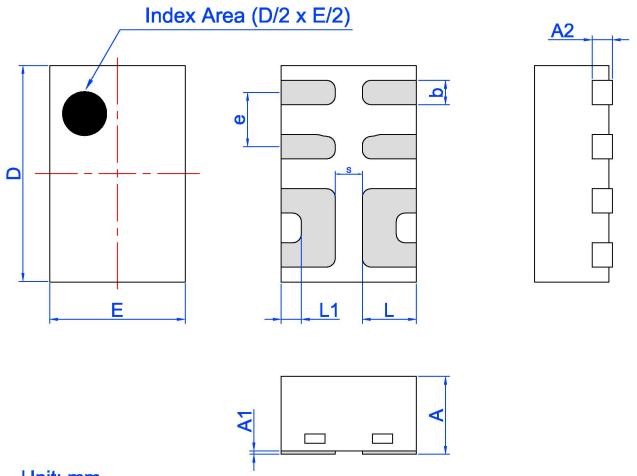



Figure 3. Typical connections for GFET3 Evaluation.

EVB Configuration

- 1. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
- 2.Turn on Power Supply 1 and set desired V_{DD} from 2.5 V...5.5 V range;
- 3.Turn on Power Supply 2 and set desired V_D from 0.85 V...5.5 V range;
- 4.Toggle the ON signal High or Low to observe SLG59M1598V operation.

Package Top Marking System Definition



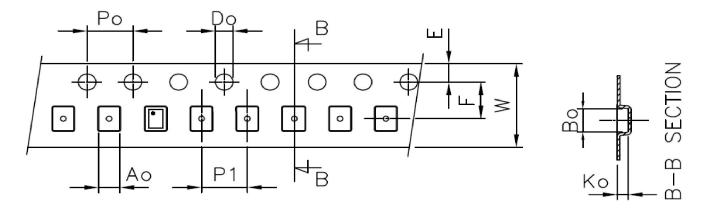
ABC - 3 alphanumeric Part Serial Number where A, B, or C can be A-Z and 0-9

Package Drawing and Dimensions

8 Lead STDFN Package 1.0 x 1.6 mm (Fused Lead)

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	•	0.060	Е	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.10	0.15	0.20
е	(0.40 BSC	•	S	().2 REF	



Tape and Reel Specifications

Package	Nominal		Max Units		Reel &	Leader (min)		Trailer (min)		Tape	Part
Package Type	# of Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STDFN 8L 1x1.6mm 0.4P FC Green		1.0 x 1.6 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Cen- ter	Tape Width
	A0	В0	K0	P0	P1	D0	E	F	W
STDFN 8L 1x1.6mm 0.4P FC Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.88 mm³ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change
06/26/2019	1.04	Updated Style and Formatting Updated Abs Max Table
9/1/2016	1.03	Updated Power Up/Down Sequencing Considerations
8/29/2016	1.02	Updated Ilimit Updated formatting and descriptions for clarity
7/8/2015	1.01	Updated EC Table Conditions
6/12/2014	1.00	Production Release

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Silego manufacturer:

Other Similar products are found below:

TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF2701MX TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1-GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM