## General Description

The SLG59M1639V is a dual-channel, $45 \mathrm{~m} \Omega \mathrm{pFET}$ power switch designed to switch 1.5 to 5.5 V power rails up to 2 A in each channel. When either channel is enabled, reverse-current protection will quickly open the switch in the event of a reverse-voltage condition is detected (a $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {IN }}+50 \mathrm{mV}$ condition opens the switch). In the event that the channel's $\mathrm{V}_{\mathrm{IN}}$ voltage is too low, the power switch also contains an internal $V_{\text {IN(UVLO) }}$ threshold monitor to keep or to turn the switch OFF. Each power switch is independently controlled via its own low-voltage compatible CMOS input.
Designed to operate over a $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ range, the SLG59M1639V is available in a RoHS-compliant, ultra-small $1.6 \times 1.0 \mathrm{~mm}$ STDFN package.

## Features

- Integrated 2-Channel pFET Power Switch
- 2 A Maximum Continuous Switch Current per Channel
- Low Typical RDS ${ }_{\text {ON: }}$ :
- $45 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$
- $60 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
- $80 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$
- Operating Voltage: 1.5 V to 5.5 V
- Reverse-current/voltage Protection
- Low-voltage CMOS Logic Compatible Switch Control
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Pb-Free / Halogen-Free / RoHS compliant packaging


## Pin Configuration



## Applications

- Power-Rail Switching:
- Notebook/Laptop/Tablet PCs
- Smartphones/Wireless Handsets
- High-definition Digital Cameras
- Set-top Boxes
- Point of Sales Pins
- GPS Navigation Devices


## Block Diagram



## Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2$ A Power Switch with Reverse-Current Blocking

Pin Description
$\left.\begin{array}{|c|c|c|l|}\hline \text { Pin \# } & \text { Pin Name } & \text { Type } & \text { Pin Description } \\ \hline 1 & \text { VIN2 } & \text { MOSFET } & \begin{array}{l}\text { Input and source terminal of MOSFET \#2. Bypass the VIN2 pin to GND with a } 1 \mu \mathrm{~F} \text { (or } \\ \text { larger), low-ESR capacitor. }\end{array} \\ \hline 2 & \text { ON2 } & \text { Input } & \begin{array}{l}\text { ON2 turns Channel 2 MOSFET ON and is a low logic-level CMOS input with ON_V } \\ \text { and ON_V }<0.3 \mathrm{~V} \\ \text { connect ON2 } 1 \mathrm{~V} \text {. As the ON2 input circuit does not have an internal pull-down resistor, }\end{array} \\ \hline 3 & \text { ON1 to a GPIO controller - do not allow this pin to be open circuited. }\end{array}\right\}$

## Ordering Information

| Part Number | Type | Production Flow |
| :---: | :---: | :---: |
| SLG59M1639V | STDFN | Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| SLG59M1639VTR | STDFN (Tape and Reel) | Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

## Absolute Maximum Ratings

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IN}[1,2]}$ | Power Switch Input Voltage |  | -0.3 | -- | 6 | V |
| $\mathrm{T}_{\mathrm{S}}$ | Storage Temperature |  | -65 | -- | 150 | ${ }^{\circ} \mathrm{C}$ |
| ESD ${ }_{\text {HBM }}$ | ESD Protection | Human Body Model | 2000 | -- | -- | V |
| ESD ${ }_{\text {CDM }}$ | ESD Protection | Charged Device Model | 1000 | -- | -- | V |
| MSL | Moisture Sensitivity Level |  | 1 |  |  |  |
| $\theta_{\text {JA }}$ | Thermal Resistance | $1.0 \times 1.6$ mm 8L STDFN | -- | 82 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\mathrm{J}, \mathrm{MAX}}$ | Maximum Junction Temperature |  | -- | 150 | -- | ${ }^{\circ} \mathrm{C}$ |
| MOSFET $\mathrm{IDS}_{\text {CONT }}$ | Continuous Current from VIN to VOUT | Each channel, $\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$ | -- | -- | 2 | A |
| MOSFET IDS ${ }_{\text {PK }}$ | Peak Current from Drain to Source | Maximum pulsed switch current, pulse width < $1 \mathrm{~ms}, 1 \%$ duty cycle | -- | -- | 2.5 | A |

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## Electrical Characteristics

$1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}[1,2]} \leq 5.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.
Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise stated)

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IN}[1,2]}$ | Power Switch Input Voltage |  | 1.5 | -- | 5.5 | V |
| $\mathrm{V}_{\text {IN(UVLO) }}$ | $\mathrm{V}_{\text {IN }}$ Undervoltage Lockout Threshold | $\mathrm{V}_{\mathrm{IN}} \uparrow, \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega$ | -- | -- | 1.2 | V |
|  |  | $\mathrm{V}_{\mathrm{IN}} \downarrow, \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega$ | 0.5 | -- | -- | V |
| IN | Quiescent Supply Current, Both Channels | $\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{HIGH}$, no Load | -- | 3.5 | 5.3 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=$ HIGH, no Load | -- | 2.5 | 4 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {IN(OFF) }}$ | OFF Mode Supply Current, Both Channels | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{LOW}, \\ & \mathrm{R}_{\mathrm{LOAD}}=1 \mathrm{M} \Omega \end{aligned}$ | -- | 1 | 1.5 | $\mu \mathrm{A}$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{LOW}, \\ & \mathrm{R}_{\mathrm{LOAD}}=1 \mathrm{M} \Omega \end{aligned}$ | -- | 0.4 | 1.0 | $\mu \mathrm{A}$ |
| $\mathrm{RDS}^{\text {ON }}$ | ON Resistance | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA} \end{aligned}$ | -- | 45 | 55 | $\mathrm{m} \Omega$ |
|  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA} \end{aligned}$ | -- | 60 | 72 | $\mathrm{m} \Omega$ |
|  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA} \end{aligned}$ | -- | 80 | 96 | $\mathrm{m} \Omega$ |
| $\mathrm{V}_{\text {REVERSE }}$ | Reverse-current Voltage Threshold |  | -- | 50 | -- | mV |
| I ReVERSE | Reverse-current Leakage Current after Reverse Current Event | $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {REVERSE }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ;$ ON1, ON2 = GND | -- | 0.6 | -- | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{ON}[1,2]}$ | ON[1,2] Pin Voltage Range |  | 0 | -- | $\mathrm{V}_{\mathrm{IN}[1,2]}$ | V |
| IoN(Leakage) | ON[1,2] Pin Leakage Current | $1.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ON}} \leq \mathrm{V}_{\mathrm{IN}}$ or $\mathrm{V}_{\mathrm{ON}}=\mathrm{GND}$ | -- | -- | 1 | $\mu \mathrm{A}$ |
| ON_V ${ }_{\text {IH }}$ | ON[1,2] Pin Input High Voltage |  | 1 | -- | $\mathrm{V}_{\mathrm{IN}[1,2]}$ | V |
| ON_V $\mathrm{V}_{\text {IL }}$ | ON[1,2] Pin Input Low Voltage |  | -0.3 | 0 | 0.3 | V |
| $\mathrm{ON}_{\mathrm{HYS}}$ | ON[1,2] Hysteresis |  | -- | 60 | -- | mV |

## Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2$ A Power Switch with Reverse-Current Blocking

## Electrical Characteristics (continued)

$1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}[1,2]} \leq 5.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.
Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise stated)

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {REV }}$ | Reverse-current Detect Response Delay | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ | -- | 10 | -- | $\mu \mathrm{s}$ |
| T REARM | Reverse Detect Rearm Time |  | -- | 0.6 | -- | ms |
| TON_Delay | ON[1,2] Delay Time | $\begin{aligned} & 50 \% \text { ONx to } 50 \% \mathrm{~V}_{\mathrm{OUTx}} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=5 \mathrm{~V} ;^{\mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}} \end{aligned}$ | -- | 1.1 | 1.65 | ms |
|  |  | $\begin{aligned} & 50 \% \text { ONx to } 50 \% \mathrm{~V}_{\text {OUTx }} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 0.8 | 1.2 | ms |
| $\mathrm{T}_{\text {Voutx(R) }}$ | $\mathrm{V}_{\text {Out[1,2] }}$ Rise Time | $\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\text {OUTX }} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \\ & \hline \end{aligned}$ | -- | 1.0 | 1.4 | ms |
|  |  | $\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\text {OUTx }} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 0.5 | 0.71 | ms |
| $\mathrm{T}_{\text {Voutx(F) }}$ | $\mathrm{V}_{\text {OUT[1,2] }}$ Fall Time | $\begin{aligned} & 90 \% \text { to } 10 \% \mathrm{~V}_{\text {OUTx }} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \\ & \hline \end{aligned}$ | -- | 2.3 | 3 | $\mu \mathrm{S}$ |
|  |  | $\begin{aligned} & 90 \% \text { to } 10 \% \mathrm{~V}_{\text {OUTx }} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 2.3 | 3 | $\mu \mathrm{S}$ |
| TOFF_Delay | OFF Delay Time | $\begin{aligned} & 50 \% \text { ONx to } 50 \% \mathrm{~V}_{\text {OUTx }} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \\ & \hline \end{aligned}$ | -- | 3.1 | 4.1 | $\mu \mathrm{S}$ |
|  |  | $\begin{aligned} & 50 \% \mathrm{ONx} \text { to } 50 \% \mathrm{~V}_{\text {OUTx }} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {INx }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 5 | 6.5 | $\mu \mathrm{S}$ |

$\mathrm{T}_{\text {ON_Delay }}, \mathrm{V}_{\mathrm{S}(\mathrm{SR})}$, and $\mathrm{T}_{\text {Total_ON }}$ Timing Details


Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2$ A Power Switch with Reverse-Current Blocking

Typical Performance Characteristics
RDS $_{\text {ON }}$ vs. $\mathrm{V}_{\mathrm{IN}[1,2]}$ and Temperature


RDS $_{\text {ON }}$ vs.Temperature and $\mathrm{V}_{\text {IN[1,2] }}$


## $\mathbf{V}_{\text {IN }[1,2]}$ Inrush Current Details

When either channel of the SLG59M1639V is enabled with ON[1,2] $\uparrow$, the power switch closes to charge the $\left.\mathrm{V}_{\text {OUt }} 1,2\right]$ output capacitor to $\mathrm{V}_{\operatorname{IN}[1,2]}$. The charging current drawn from $\mathrm{V}_{\mathbb{I N}[1,2]}$ is commonly referred to as " $\mathrm{V}_{\mathbb{I N}}$ inrush current" and can cause the input power source to collapse if the $\mathrm{V}_{\text {IN }}$ inrush current is too high.

Since the $\mathrm{V}_{\text {OUT[1,2] }}$ rise time of the SLG59M1639V is fixed, $\mathrm{V}_{\mathrm{IN}[1,2]}$ inrush current is then a function of the output capacitance at


$$
\mathrm{V}_{\mathrm{IN}[1,2]} \text { Inrush Current }=\mathrm{C}_{\mathrm{LOAD}[1,2]} \times \frac{\Delta \mathrm{V}_{\text {OUT }[1,2]}}{\mathrm{V}_{\text {OUT }[1,2]} \text { Rise Time }}
$$

where in this expression $\Delta \mathrm{V}_{\mathrm{OUT}[1,2]}$ is equivalent to $\mathrm{V}_{\mathrm{IN}[1,2]}$ if the initial SLG59M1639V's output voltages are zero.
In the table below are examples of $\mathrm{V}_{\mathrm{IN}[1,2]}$ inrush currents assuming zero initial charge on $\mathrm{C}_{\mathrm{LOAD}[1,2]}$ as a function of $\mathrm{V}_{\operatorname{IN}[1,2]}$.

| $\mathbf{V}_{\mathbf{I N}[1,2]}$ | $\mathbf{V}_{\text {OUT[1,2] }}$ Rise Time | $\mathbf{C}_{\text {LOAD[1,2] }}$ | Inrush Current |
| :---: | :---: | :---: | :---: |
| 1.5 V | $0.5 \mu \mathrm{~s}$ | $0.1 \mu \mathrm{~F}$ | 0.3 mA |
| 5 V | $1 \mu \mathrm{~s}$ | $0.1 \mu \mathrm{~F}$ | 0.5 mA |

Since the relationship is linear and If $C_{\text {LOAD }[1,2]}$ were increased to $1 \mu \mathrm{~F}$, then the $\mathrm{V}_{\operatorname{IN}[1,2]}$ inrush currents would be $10 x$ higher in either example. If a large $C_{\text {LOAD[1,2] }}$ capacitor is required in the application and depending upon the strength of the input power


For other $\mathrm{V}_{\mathrm{OUT}[1,2]}$ rise time options, please contact Dialog for additional information.

## Power Dissipation

The junction temperature of the SLG59M1639V depends on factors such as board layout, ambient temperature, external air flow over the package, load current, and the $\mathrm{RDS}_{\mathrm{ON}}$-generated voltage drop across each power MOSFET. While the primary contributor to the increase in the junction temperature of the SLG59M1639V is the power dissipation of its power MOSFETs, its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}_{\text {TOTAL }}=\left(\mathrm{RDS}_{\mathrm{ON} 1} \times \mathrm{I}_{\mathrm{DS} 1}{ }^{2}\right)+\left(\mathrm{RDS}_{\mathrm{ON} 2} \times \mathrm{I}_{\mathrm{DS} 2}{ }^{2}\right)
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts $(\mathrm{W})$
$\operatorname{RDS}_{\mathrm{ON}[1,2]}=$ Channel 1 and Channel 2 Power MOSFET ON resistance, in Ohms $(\Omega)$, respectively $\mathrm{I}_{\mathrm{DS}[1,2]}=$ Channel 1 and Channel 2 Output current, in Amps (A), respectively
and

$$
\mathrm{T}_{J}=P D_{\text {TOTAL }} \times \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{A}}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Die junction temperature, in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt ( ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ) - highly dependent on pcb layout
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$

## Power Dissipation (continued)

In nominal operating mode, the SLG59M1639V's power dissipation can also be calculated by taking into account the voltage drop


$$
\begin{gathered}
\mathrm{PD}_{\text {TOTAL }}=\left[\left(\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{OUT} 1}\right) \times \mathrm{I}_{\mathrm{DS} 1}\right]+\left[\left(\mathrm{V}_{\mathrm{IN} 2}-\mathrm{V}_{\mathrm{OUT} 2}\right) \times \mathrm{I}_{\mathrm{DS} 2}\right] \text { or } \\
\mathrm{PD}_{\text {TOTAL }}=\left[\left(\mathrm{V}_{\mathrm{IN} 1}-\left(\mathrm{R}_{\mathrm{LOAD} 1} \times \mathrm{I}_{\mathrm{DS} 1}\right)\right) \times \mathrm{I}_{\mathrm{DS} 1}\right]+\left[\left(\mathrm{V}_{\mathrm{IN} 2}-\left(\mathrm{R}_{\mathrm{LOAD} 2} \times \mathrm{I}_{\mathrm{DS} 2}\right)\right) \times \mathrm{I}_{\mathrm{DS} 2}\right]
\end{gathered}
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
$\mathrm{V}_{\text {IN[1,2] }}=$ Channel 1 and Channel 2 Input Voltage, in Volts (V), respectively
$R_{\text {LOAD[1,2] }}=$ Channel 1 and Channel 2 Output Load Resistance, in Ohms ( $\Omega$ ), respectively
$\mathrm{I}_{\mathrm{DS}[1,2]}=$ Channel 1 and Channel 2 output current, in Amps (A), respectively
$\mathrm{V}_{\text {OUT[1,2] }}=$ Channel 1 and Channel 2 output voltage, or $\mathrm{R}_{\mathrm{LOAD}[1,2]} \times \mathrm{I}_{\mathrm{DS}[1,2]}$, respectively

## Power Dissipation Derating Curve



Note: Each $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}=1 \mathrm{in}^{2} 1.2 \mathrm{oz}$. copper on FR4

Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2$ A Power Switch
with Reverse-Current Blocking

SLG59M1639V Layout Suggestion


## Exposed Pad

(PKG face down)

- $\neg]$ Recommended Land Patterr (PKG face down)


Package Top Marking System Definition


ABC - 3 alphanumeric Part Serial Number
where $A, B$, or $C$ can be $A-Z$ and $0-9$

Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2 \mathrm{~A}$ Power Switch with Reverse-Current Blocking

Package Drawing and Dimensions
8 Lead STDFN Package $1.0 \times 1.6 \mathrm{~mm}$


Unit: mm

| Symbol | Min | Nom. | Max | Symbol | Min | Nom. | Max |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0.50 | 0.55 | 0.60 | D | 1.55 | 1.60 | 1.65 |  |  |  |  |  |
| A1 | 0.005 | - | 0.050 | E | 0.95 | 1.00 | 1.05 |  |  |  |  |  |
| A2 | 0.10 | 0.15 | 0.20 | L | 0.35 | 0.40 | 0.45 |  |  |  |  |  |
| b | 0.13 | 0.18 | 0.23 | L1 | 0.225 | 0.275 | 0.325 |  |  |  |  |  |
| e | 0.40 BSC |  |  |  |  |  |  |  |  |  |  |  |

Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2$ A Power Switch with Reverse-Current Blocking

Tape and Reel Specifications

| Package Type | \# of <br> Pins | Nominal Package Size [mm] | Max Units |  |  <br> Hub Size [mm] | Leader (min) |  | Trailer (min) |  | Tape Width [mm] | Part <br> Pitch <br> [mm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | per Reel | per Box |  | Pockets | Length [mm] | Pockets | Length [mm] |  |  |
| STDFN 8L $1 \times 1.6 \mathrm{~mm}$ 0.4 FFCD Green | 8 | $1.0 \times 1.6 \times 0.55$ | 3,000 | 3,000 | 178 / 60 | 100 | 400 | 100 | 400 | 8 | 4 |

## Carrier Tape Drawing and Dimensions

| Package Type | Pocket BTM Length | Pocket BTM Width | Pocket Depth | Index Hole Pitch | Pocket Pitch | Index Hole Diameter | Index Hole to Tape Edge | Index Hole to Pocket Center | Tape Width |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A0 | B0 | K0 | P0 | P1 | D0 | E | F | W |
| STDFN 8L $1 \times 1.6 \mathrm{~mm}$ 0.4 PFCD Green | 1.12 | 1.72 | 0.7 | 4 | 4 | 1.55 | 1.75 | 3.5 | 8 |



## Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.88 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

Ultra-small 2-Channel $45 \mathrm{~m} \Omega / 2$ A Power Switch with Reverse-Current Blocking

Revision History

| Date | Version | Change |
| :---: | :---: | :--- |
| $9 / 17 / 2018$ | 1.07 | Updated style and formatting <br> Updated Charts |
| $8 / 29 / 2017$ | 1.06 | Updated Inrush Current Details <br> Fixed typos |
| $4 / 13 / 2017$ | 1.05 | Fixed Reverse Voltage Detection equation |
| $4 / 18 / 2016$ | 1.04 | Updated Electrical Characteristics |
| $4 / 1 / 2016$ | 1.03 | Fixed typo in Pin Configuration |
| $2 / 17 / 2016$ | 1.02 | Updated POD and Landing Pattern |
| $2 / 9 / 2016$ | 1.01 | Updated Electrical Characteristics |
| $2 / 3 / 2016$ | 1.00 | Production Release |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

