An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$, P-Channel Integrated Power Switch with Reverse-Current Blocking

## General Description

The SLG59M1649V is a self-powered, high-performance, $23 \mathrm{~m} \Omega \mathrm{pFET}$ integrated power switch designed for 1.5 V to 5.5 V power rail applications up to 4 A . When enabled, internal reverse-current protection will quickly open the switch in the event of a reverse-voltage condition is detected
( $a \mathrm{~V}_{\text {OUT }}+50 \mathrm{mV}>\mathrm{V}_{\text {IN }}$ condition opens the switch). Upon the detection of a reverse condition, an open-drain FAULT output is asserted. In the event the $\mathrm{V}_{\mathrm{IN}}$ voltage is too low, the power switch also contains an internal $\mathrm{V}_{\mathrm{IN}(\text { UVLO })}$ threshold monitor to keep or to turn the switch OFF.
Designed to operate over a $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ range, the SLG59M1649V is available in a RoHS-compliant, ultra-small $1.0 \times 1.6 \mathrm{~mm}$ STDFN package.

## Features

- Steady-state Operating Current: Up to 4 A
- Low Typical RDS ${ }_{\mathrm{ON}}$ :
- $23 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$
- $31 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
- $42 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$
- Operating Voltage: 1.5 V to 5.5 V
- Reverse-voltage Detection when ON or OFF
- Internal Gate Driver and $\mathrm{V}_{\text {OUT }}$ Discharge
- Open-drain FAULT Signaling
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Low $\theta_{\mathrm{JA}}$, 8-pin $1.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ STDFN Packaging
- Pb-Free / Halogen-Free / RoHS compliant packaging

Pin Configuration


## Applications

- Power-Rail Switching:
- Notebook/Laptop/Tablet PCs
- Smartphones/Wireless Handsets
- High-definition Digital Cameras
- Set-top Boxes
- Point of Sales Pins
- GPS Navigation Devices


## Block Diagram



An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$, P-Channel Integrated Power Switch with Reverse-Current Blocking

Pin Description

| Pin \# | Pin Name | Type | Pin Description |
| :---: | :---: | :---: | :---: |
| 1,4 | VIN | Power/Input | With an internal $1.4 \mathrm{~V} \mathrm{~V}_{\mathrm{IN} \text { (UVLO) }}$ threshold, VIN supplies the power for the operation of the power switch, the internal control circuitry, and the source terminal of pFET. Bypass the VIN pin to GND with a $2.2 \mu \mathrm{~F}$ (or larger), low-ESR capacitor. |
| 2, 3 | ON | Input | A low-to-high transition on this pin initiates the operation of the power switch. ON is an asserted-HIGH, level-sensitive CMOS input with $\mathrm{ON} \mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and $\mathrm{ON}, \mathrm{V}_{\mathrm{IH}}>1 \mathrm{~V}$. As the ON input circuitry does not have an internal pull-down resistor, connect the ON pin directly to a GPIO controller - do not allow this pin to be open circuited. |
| 5, 8 | VOUT | Output | Output and drain terminal of MOSFET. |
| 6 | $\overline{\text { FAULT }}$ | Output | An open drain output, $\overline{\text { FAULT }}$ is asserted within T $\overline{\mathrm{FAULT}}_{\text {LOw }}$ when a $\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {REVERSE }}>\mathrm{V}_{\text {IN }}\right)$ condition is detected. The FAULT output is deasserted within $\overline{T F A U L T}_{\text {HIGH }}$ when the fault condition is removed. Connect an external $10 \mathrm{k} \Omega$ resistor from the FAULT pin to the system's local logic supply. |
| 7 | GND | GND | Ground connection. Connect this pin to system analog or power ground plane. |

## Ordering Information

| Part Number | Type | Production Flow |
| :---: | :---: | :---: |
| SLG59M1649V | STDFN 8L | Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| SLG59M1649VTR | STDFN 8L (Tape and Reel) | Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

## P-Channel Integrated Power Switch with Reverse-Current Blocking

## Absolute Maximum Ratings

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}$ | Power Switch Input Voltage |  | -0.3 | -- | 6 | V |
| $\mathrm{T}_{S}$ | Storage Temperature |  | -65 | -- | 150 | ${ }^{\circ} \mathrm{C}$ |
| ESD ${ }_{\text {HBM }}$ | ESD Protection | Human Body Model | 2000 | -- | -- | V |
| ESD ${ }_{\text {CDM }}$ | ESD Protection | Charged Device Model | 1000 | -- | -- | V |
| MSL | Moisture Sensitivity Level |  | 1 |  |  |  |
| $\theta_{\text {JA }}$ | Thermal Resistance | $1.0 \times 1.6$ mm 8L STDFN | -- | 82 | -- | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\mathrm{J}, \mathrm{MAX}}$ | Maximum Junction Temperature |  | -- | 150 | -- | ${ }^{\circ} \mathrm{C}$ |
| MOSFET $\mathrm{IDS}_{\mathrm{CONT}}$ | Continuous Current from VIN to VOUT | Each channel, $\mathrm{T}_{\boldsymbol{J}}<150^{\circ} \mathrm{C}$ | -- | -- | 4 | A |
| MOSFET IDS ${ }_{\text {PK }}$ | Peak Current from VIN to VOUT | Maximum pulsed switch current, pulse width < $1 \mathrm{~ms}, 1 \%$ duty cycle | -- | -- | 4.5 | A |

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## Electrical Characteristics

$1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}$ | Power Switch Input Voltage |  | 1.5 | -- | 5.5 | V |
| $\mathrm{V}_{\text {IN(UVLO) }}$ | $\mathrm{V}_{\text {IN }}$ Undervoltage Lockout Threshold | $\mathrm{V}_{\text {IN }} \uparrow, \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega$ | -- | -- | 1.4 | V |
|  |  | $\mathrm{V}_{\text {IN }} \downarrow, \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega$ | 0.5 | -- | -- | V |
| $\mathrm{I}_{\text {IN }}$ | Quiescent Power Switch Current | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{ON}=\mathrm{HIGH}, \\ & \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~mA} \end{aligned}$ | -- | 6.6 | 11 | $\mu \mathrm{A}$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{ON}=\mathrm{HIGH}, \\ & \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~mA} \end{aligned}$ | -- | 5 | 8 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{IN}(\mathrm{OFF})}$ | OFF Mode Power Switch Current | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{ON}=\mathrm{LOW}, \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{M} \Omega \\ & \hline \end{aligned}$ | -- | 2 | 3 | $\mu \mathrm{A}$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{ON}=\mathrm{LOW}, \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{M} \Omega \end{aligned}$ | -- | 0.8 | 2 | $\mu \mathrm{A}$ |
| $\mathrm{RDS}_{\text {ON }}$ | ON Resistance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA}$ | -- | 23 | 28 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA}$ | -- | 31 | 38 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA}$ | -- | 42 | 50 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA}$ | -- | 27 | 32 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA}$ | -- | 37 | 44 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-200 \mathrm{~mA}$ | -- | 48 | 58 | $\mathrm{m} \Omega$ |
| MOSFET IDS | Current from VIN to VOUT | Continuous | -- | -- | 4 | A |
| $\mathrm{V}_{\text {REVERSE }}$ | Reverse-current Voltage Threshold |  | -- | 50 | -- | mV |
| I REVERSE | Reverse-current Leakage Current after Reverse Current Event | $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {REVERSE }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ;$ $\mathrm{ON}=\mathrm{GND}$ | -- | 1 | -- | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{ON}}$ | ON Pin Voltage Range |  | 0 |  | $\mathrm{V}_{\mathrm{IN}}$ | V |
| ION(Leakage) | ON Pin Leakage Current | $1.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ON}} \leq \mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\mathrm{ON}}=\mathrm{GND}$ | -- | -- | 1 | $\mu \mathrm{A}$ |
| ON_V ${ }_{\text {IH }}$ | ON Pin Input High Voltage |  | 1 | -- | $\mathrm{V}_{\mathrm{IN}}$ | V |

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,

## P-Channel Integrated Power Switch with Reverse-Current Blocking

## Electrical Characteristics (continued)

$1.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ON_V ${ }_{\text {IL }}$ | ON Pin Input Low Voltage |  | -0.3 | 0 | 0.3 | V |
| $\mathrm{ON}_{\mathrm{HYS}}$ | ON Hysteresis |  | -- | 60 | -- | mV |
| $\mathrm{R}_{\text {DISCHRG }}$ | Output Discharge Resistance | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}<0.4 \mathrm{~V}$ | 50 | 80 | 120 | $\Omega$ |
| $\mathrm{T}_{\text {REV }}$ | Reverse-current Detect Response Delay | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ | -- | 10 | -- | $\mu \mathrm{s}$ |
| T REARM | Reverse Detect Rearm Time |  | -- | 1.5 | -- | ms |
| Ton_Delay | ON Delay Time | $\begin{aligned} & 50 \% \mathrm{ON} \text { to } 50 \% \mathrm{~V}_{\mathrm{OUT}} \uparrow \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 180 | 235 | $\mu \mathrm{S}$ |
|  |  | $\begin{aligned} & 50 \% \text { ON to } 50 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 110 | 145 | $\mu \mathrm{S}$ |
| $\mathrm{T}_{\text {Vout(R) }}$ | $\mathrm{V}_{\text {Out }}$ Rise Time | $\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\mathrm{OUT}} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 130 | 170 | $\mu \mathrm{S}$ |
|  |  | $\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 66 | 86 | $\mu \mathrm{S}$ |
| T Vout(F) | $V_{\text {Out }}$ Fall Time | $\begin{aligned} & 90 \% \text { to } 10 \% \mathrm{~V}_{\mathrm{OUT}} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \\ & \hline \end{aligned}$ | -- | 2.2 | 3.6 | $\mu \mathrm{S}$ |
|  |  | $\begin{aligned} & 90 \% \text { to } 10 \% \mathrm{~V}_{\mathrm{OUT}} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 2.2 | 3.6 | $\mu \mathrm{S}$ |
| ToFF_Delay | OFF Delay Time | $\begin{aligned} & 50 \% \mathrm{ON} \text { to } 50 \% \mathrm{~V}_{\mathrm{OUT}} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 3.5 | 5 | $\mu \mathrm{S}$ |
|  |  | $\begin{aligned} & 50 \% \mathrm{ON} \text { to } 50 \% \mathrm{~V}_{\mathrm{OUT}} \downarrow ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$ | -- | 5 | 7 | $\mu \mathrm{S}$ |
| T $\overline{\text { FAULT }}_{\text {Low }}$ | $\overline{\text { FAULT }}$ Assertion Time | Reverse-voltage Detection to $\overline{\mathrm{FAULT}} \downarrow$; $1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V} ; \mathrm{ON}=\text { Low }$ | -- | 2 | -- | $\mu \mathrm{S}$ |
|  |  | $1.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V}$; ON = High | -- | 0.5 | -- | $\mu \mathrm{s}$ |
| TFAULT $\overline{\text { HIGH }}$ | $\overline{\text { FAULT }}$ De-assertion Time | Delay to $\overline{\text { FAULT }} \uparrow$ after fault condition is removed; $1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V} \text {; ON = Low }$ | -- | 7 | -- | ms |
|  |  | $1.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V} ; \mathrm{ON}=$ High | -- | 2 | -- | ms |
| $\overline{\text { FAULT }}_{\text {VOL }}$ | $\overline{\text { FAULT Output Low Voltage }}$ | $\mathrm{l}_{\overline{\text { FAULT }}}=1 \mathrm{~mA}$ | -- | -- | 0.2 | V |

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4$ A,
P-Channel Integrated Power Switch with Reverse-Current Blocking
$\mathrm{T}_{\text {ON_Delay }}, \mathrm{V}_{\text {OUT(SR) }}$, and $\mathrm{T}_{\text {Total_ON }}$ Timing Details


An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4$ A,
P-Channel Integrated Power Switch with Reverse-Current Blocking
RDS $_{\text {ON }}$ vs. $\mathrm{V}_{\text {IN }}$ and Temperature


RDS $_{\text {ON }}$ vs.Temperature and $\mathrm{V}_{\mathrm{IN}}$


An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4$ A,

## P-Channel Integrated Power Switch with Reverse-Current Blocking

## $\mathrm{V}_{\text {IN }}$ Inrush Current Details

When the SLG59M1649V is enabled with $\mathrm{ON} \uparrow$, the power switch closes to charge the VOUT output capacitor to $\mathrm{V}_{\mathrm{IN}}$. The charging current drawn from $\mathrm{V}_{\mathrm{IN}}$ is commonly referred to as " $\mathrm{V}_{\mathrm{IN}}$ inrush current" and can cause the input power source to collapse if the $\mathrm{V}_{\text {IN }}$ inrush current is too high.

Since the $\mathrm{V}_{\text {OUT }}$ rise time of the SLG59M1649V is fixed, $\mathrm{V}_{\text {IN }}$ inrush current is then a function of the output capacitance at VOUT. The expression relating $\mathrm{V}_{\mathrm{IN}}$ inrush current, the $\mathrm{SLG59M1649V} \mathrm{~V}_{\text {OUT }}$ rise time, and $\mathrm{C}_{\text {LOAD }}$ is:

$$
\mathrm{V}_{\text {IN }} \text { Inrush Current }=\mathrm{C}_{\text {LOAD }} \times \frac{\Delta \mathrm{V}_{\text {OUT }}(10 \% \text { to } 90 \%)}{\mathrm{T}_{\operatorname{VOUT}(\mathrm{R})}(10 \% \text { to } 90 \%)}
$$

where in this expression $\Delta \mathrm{V}_{\text {OUT }}$ is equivalent to $\mathrm{V}_{\mathrm{IN}}$ if the initial SLG59M1649V's output voltages are zero.
In the table below are examples of $\mathrm{V}_{\mathbb{I N}}$ inrush currents assuming zero initial charge on $\mathrm{C}_{\text {LOAD }}$ as a function of $\mathrm{V}_{\text {IN }}$.

| $\mathbf{V}_{\mathbf{I N}} \mathbf{( V )}$ | $\mathbf{V}_{\text {OUT }}$ Rise Time $(\boldsymbol{\mu s})$ | $\mathbf{C}_{\text {LOAD }}(\boldsymbol{\mu F})$ | Inrush Current $(\mathbf{m A})$ |
| :---: | :---: | :---: | :---: |
| 1.5 | 66 | 0.1 | 1.8 |
| 5 | 130 | 0.1 | 3.1 |

Since the relationship is linear and if $C_{\text {LOAD }}$ were increased to $1 \mu \mathrm{~F}$, then the $\mathrm{V}_{\mathrm{IN}}$ inrush currents would be $10 x$ higher in either example. If a large $C_{\text {LOAD }}$ capacitor is required in the application and depending upon the strength of the input power source, it may very well be necessary to increase the $\mathrm{C}_{\mathbb{I N}}$-to- $\mathrm{C}_{\mathrm{LOAD}}$ ratio to minimize $\mathrm{V}_{\mathrm{IN}}$ droop during turn-on.

For other $\mathrm{V}_{\text {OUT }}$ rise time options, please contact Dialog for additional information.

## Power Dissipation

The junction temperature of the SLG59M1649V depends on factors such as board layout, ambient temperature, external air flow over the package, load current, and the $\mathrm{RDS}_{\mathrm{ON}}$-generated voltage drop across each power MOSFET. While the primary contributor to the increase in the junction temperature of the SLG59M1649V is the power dissipation of its power MOSFETs, its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}_{\mathrm{TOTAL}}=\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

where:
PD ${ }_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
RDS $_{\text {ON }}=$ Power MOSFET ON resistance, in Ohms ( $\Omega$ )
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
and

$$
\mathrm{T}_{J}=\mathrm{PD}_{\text {TOTAL }} \mathrm{x} \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{A}}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Die junction temperature, in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt ( ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ) - highly dependent on pcb layout
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees ( ${ }^{\circ} \mathrm{C}$ )

## P-Channel Integrated Power Switch with Reverse-Current Blocking

## Power Dissipation (continued)

In nominal operating mode, the SLG59M1649V's power dissipation can also be calculated by taking into account the voltage drop across each switch $\left(\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\text {OUT }}\right)$ and the magnitude of that channel's output current ( $\mathrm{l}_{\mathrm{DS}}$ ):

$$
\begin{gathered}
\mathrm{PD}_{\text {TOTAL }}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\mathrm{DS}} \text { or } \\
\text { PD }_{\text {TOTAL }}=\left(\mathrm{V}_{\mathrm{IN}}-\left(\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\mathrm{DS}}\right)\right) \times \mathrm{I}_{\mathrm{DS}}
\end{gathered}
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
$\mathrm{V}_{\text {IN }}=$ Input Voltage, in Volts (V)
$\mathrm{R}_{\text {LOAD }}=$ Output Load Resistance, in Ohms ( $\Omega$ )
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
$\mathrm{V}_{\text {OUT }}=$ Output voltage, or $\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\mathrm{DS}}$

## Power Dissipation Derating Curve



Note: Each $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}=1 \mathrm{in}^{2} 1.2 \mathrm{oz}$. copper on FR4

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4$ A,
P-Channel Integrated Power Switch with Reverse-Current Blocking

## SLG59M1649V Layout Suggestion



## Exposed Pad

(PKG face down)
$[-\neg$ Recommended Land Patterr (PKG face down)


Recommended PCB Layout for external power traces


Note: All dimensions shown in $\mu \mathrm{m}$ (micrometers)

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,

## P-Channel Integrated Power Switch with Reverse-Current Blocking

## Layout Guidelines:

1. Since the VIN and VOUT pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils ( 0.381 mm ) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
2. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input $\mathrm{C}_{\mathrm{IN}}$ and output C LOAD low-ESR capacitors as close as possible to the SLG59M1649V's VIN and VOUT pins;
3. The GND pin should be connected to system analog or power ground plane.
4. 2 oz . copper is recommended for high current operation.

## SLG59M1649V Evaluation Board:

A GFET3 Evaluation Board for SLG59M1649V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS $_{\mathrm{ON}}$ evaluation.


Figure 1. SLG59M1649V Evaluation Board.

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,

## P-Channel Integrated Power Switch with Reverse-Current Blocking



Figure 2. SLG59M1649V Evaluation Board Connection Circuit.

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,

## P-Channel Integrated Power Switch with Reverse-Current Blocking

## Basic Test Setup and Connections



Figure 3. Typical connections for GFET3 Evaluation.

## EVB Configuration

1. Connect oscilloscope probes to D1/VIN, D2, S1/VO1, S2/VO2, ON etc.;
2. Use VDD connector to have logic high level for FAULT and ON signals;
3. Turn on Power Supply 1 and set desired $\mathrm{V}_{\mathrm{IN}}$ from 1.5 V ...5.5 V range;
4. Toggle the ON signal High or Low to observe SLG59M1649V operation.

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,
P-Channel Integrated Power Switch with Reverse-Current Blocking
Package Top Marking System Definition


ABC - 3 alphanumeric Part Serial Number where $A, B$, or $C$ can be $A-Z$ and $0-9$

Package Drawing and Dimensions
8 Lead STDFN Package $1.0 \times 1.6 \mathrm{~mm}$


Unit: mm

| Symbol | Min | Nom. | Max | Symbol | Min | Nom. | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0.50 | 0.55 | 0.60 | D | 1.55 | 1.60 | 1.65 |
| A1 | 0.005 | - | 0.050 | E | 0.95 | 1.00 | 1.05 |
| A2 | 0.10 | 0.15 | 0.20 | L | 0.35 | 0.40 | 0.45 |
| b | 0.13 | 0.18 | 0.23 | L1 | 0.225 | 0.275 | 0.325 |
| e | 0.40 BSC |  |  |  |  |  |  |

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,
P-Channel Integrated Power Switch with Reverse-Current Blocking
Tape and Reel Specifications

| Package Type | \# of Pins | Nominal Package Size [mm] | Max Units |  |  <br> Hub Size [mm] | Leader (min) |  | Trailer (min) |  | Tape Width [mm] | Part <br> Pitch <br> [mm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | per Reel | per Box |  | Pockets | Length [mm] | Pockets | Length [mm] |  |  |
| STDFN 8L $1 \times 1.6 \mathrm{~mm}$ 0.4P FCD Green | 8 | $1.0 \times 1.6 \times 0.55$ | 3,000 | 3,000 | 178 / 60 | 100 | 400 | 100 | 400 | 8 | 4 |

## Carrier Tape Drawing and Dimensions

| Package Type | PocketBTM <br> Length | $\begin{aligned} & \text { Pocket BTM } \\ & \text { Width } \end{aligned}$ | Pocket Depth | Index Hole Pitch | Pocket Pitch | Index Hole Diameter | Index Hole to Tape Edge | Index Hole to Pocket Center | Tape Width |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A0 | B0 | K0 | P0 | P1 | D0 | E | F | W |
| STDFN 8L 1x1.6mm 0.4 FFD Green | 1.12 | 1.72 | 0.7 | 4 | 4 | 1.55 | 1.75 | 3.5 | 8 |



## Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.88 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

An Ultra-small, Low-power $23 \mathrm{~m} \Omega, 4 \mathrm{~A}$,
P-Channel Integrated Power Switch with Reverse-Current Blocking
Revision History

| Date | Version | Change |
| :---: | :---: | :--- |
| $12 / 12 / 2018$ | 1.01 | Updated UVLO spec <br> Updated Style and Formatting <br> Updated Charts |
| $2 / 23 / 2017$ | 1.00 | Added Layout Guidelines <br> Fixed typos |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF2701MX TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1-GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

