General Description

The SLG59M1735C is a high performance $10.5 \mathrm{~m} \Omega, 4$ A sin-gle-channel nFET integrated power switch which can operate with a 2.5 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ supply to switch power rails from as low as 0.9 V up to the supply voltage. The SLG59M1735C incorporates two-level overload current protection, thermal shutdown protection, and soft-start control which can easily be adjusted by a small external capacitor.
Using a proprietary MOSFET design, the SLG59M1735C achieves its stable $10.5 \mathrm{~m} \Omega \mathrm{RDS}_{\mathrm{ON}}$ across a wide input voltage range. Through the application of Dialog's proprietary CuFET technology, the SLG59M1735C's can be used in high-current applications with a very-small $1.5 \mathrm{~mm}^{2}$ WLCSP form factor.

Features

- Low RDS ${ }_{\text {ON }}$ nFET: $10.5 \mathrm{~m} \Omega$
- Steady-state Operating Current: Up to 4 A
- Supply Voltage: $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$
- Wide Input Voltage Range: $0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}} \leq \mathrm{V}_{\mathrm{DD}}$
- Capacitor-adjustable Soft-start Control
- Two-stage Overcurrent Protection:
- Fixed 6 A Active Current Limit
- Fixed 0.5 A Short-circuit Current Limit
- Thermal Shutdown Protection
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- $0.96 \mathrm{~mm} \times 1.56 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch 8L WLCSP
- Pb-Free / Halogen-Free / RoHS-Compliant

Pin Configuration

Applications

- Notebook Power Rail Switching
- Tablet Power Rail Switching
- Smartphone Power Rail Switching

Block Diagram

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP

Pin Description

Pin \#	Pin Name	Type	Pin Description
A1	VDD	PWR	$V_{\text {DD }}$ power for load switch control (2.5 V to 5.5 V)
B1	ON	Input	Turns MOSFET ON (4 M Ω pull down resistor) CMOS input with $O N _V_{I L}<0.3 \mathrm{~V}, \mathrm{ON} \mathrm{V}_{\text {IH }}>0.85 \mathrm{~V}$
C1	D	MOSFET	Drain of Power MOSFET (fused with pin D1)
D1	D	MOSFET	Drain of Power MOSFET (fused with pin C1)
D2	S	MOSFET	Source of Power MOSFET (fused with pin C2)
C2	S	MOSFET	Source of Power MOSFET (fused with pin D2)
B2	CAP	Input	Capacitor for controlling power rail ramp rate
A2	GND	GND	Ground

Ordering Information

Part Number	Type	Production Flow
SLG59M1735C	WLCSP 8L	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59M1735CTR	WLCSP 8L (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
V_{DD}	Power Supply		--	--	7	V
$\mathrm{~T}_{\mathrm{S}}$	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
T_{O}	Operating Temperature		-40	--	85	${ }^{\circ} \mathrm{C}$
T_{A}	Rated Operating Temperature		-40	--	85	${ }^{\circ} \mathrm{C}$
$\mathrm{ESD}_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	4	V
$\mathrm{ESD}_{\text {CDM }}$	ESD Protection	Charged Device Model	500	--	6	V
MSL	Moisture Sensitivity Level		-	1		
$\theta_{\text {JA }}$	Package Thermal Resistance, Junction-to-Ambient	0.96mm x 1.56mm WLCSP; Determined using 1 in ${ }^{2}, 1$ oz. copper pads under each VD and VS on FR4 pcb material	--	100	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
W $_{\text {DIS }}$	Package Power Dissipation		--	--	1	W
IDS $_{\text {MAX }}$	Max Continuous Switch Current		--	--	4	A
MOSFET IDS	Peak Current from Drainto Source	Maximum pulsed switch current, pulse width < 1 ms, 1\% duty cycle	--	--	6	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise stated)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
V_{DD}	Power Supply Voltage	-40 to $85^{\circ} \mathrm{C}$	2.5	--	5.5	V
$I_{\text {DD }}$	Power Supply Current	when OFF	--	0.04	2	$\mu \mathrm{A}$
		when ON	--	77	110	$\mu \mathrm{A}$
$\mathrm{RDS}^{\text {ON }}$	ON Resistance	$\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$	--	10.5	12.1	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}} 85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$	--	12.7	14.3	$\mathrm{m} \Omega$
V_{D}	Drain Voltage		0.9	--	V_{DD}	V
IFET_OFF	MOSFET OFF Leakage Current	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=4.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} ; \mathrm{ON}=L O W ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	--	0.03	1	$\mu \mathrm{A}$
$I_{\text {LIMIT }}$	Active Current Limit	MOSFET will automatically limit current when $\mathrm{V}_{\mathrm{S}}>250 \mathrm{mV}$	4.5	6.0	8	A
	Short Circuit Current Limit	MOSFET will automatically limit current when $\mathrm{V}_{\mathrm{S}}<250 \mathrm{mV}$	--	0.5	--	A
TON_Delay	ON Delay Time	$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 10 \% \mathrm{~V}_{\mathrm{S}} \uparrow ; \\ & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{LOAD}}=20 \Omega, \\ & \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F} \end{aligned}$	--	220	400	$\mu \mathrm{S}$
$\mathrm{V}_{\mathrm{S}(\mathrm{SR})}$	Slew Rate	$10 \% \mathrm{~V}_{\mathrm{S}}$ to $90 \% \mathrm{~V}_{\mathrm{S}} \uparrow$;	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			$\mu \mathrm{s}$
		Example: $10 \% \mathrm{~V}_{\mathrm{S}}$ to $90 \% \mathrm{~V}_{\mathrm{S}} \uparrow$; $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$; $\mathrm{C}_{\text {SLEW }}=3.9 \mathrm{nF}$ $R_{\text {LOAD }}=20 \Omega, C_{\text {LOAD }}=10 \mu \mathrm{~F}$	2.2	2.8	3.5	V/ms
$\mathrm{T}_{\text {Total_ON }}$	Total Turn-on Time	50\% ON to 90\% $\mathrm{V}_{\mathrm{S}} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			ms
		Example: 50% ON to $90 \% \mathrm{~V}_{\mathrm{S}} \uparrow$ $V_{D D}=V_{D}=5 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=3.9 \mathrm{nF}$ $\mathrm{R}_{\text {LOAD }}=20 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}$	1.5	1.9	2.3	ms

Electrical Characteristics (continued)
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise stated)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
TOFF_Delay	OFF Delay Time	$\begin{aligned} & 50 \% \text { ON to } V_{S} \downarrow ; \\ & V_{D D}=V_{D}=5 \mathrm{~V}, \\ & R_{\text {LOAD }}=20 \Omega, \text { no } C_{\text {LOAD }} \end{aligned}$	--	23	--	$\mu \mathrm{S}$
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from V_{S} to GND	--	--	500	$\mu \mathrm{F}$
ON_V ${ }_{\text {IH }}$	High Input Voltage on ON pin		0.85	--	V_{DD}	V
ON_V $\mathrm{V}_{\text {IL }}$	Low Input Voltage on ON pin		-0.3	0	0.3	V
THERM ${ }_{\text {ON }}$	Thermal shutoff turn-on temperature		--	125	--	${ }^{\circ} \mathrm{C}$
THERM ${ }_{\text {OFF }}$	Thermal shutoff turn-off temperature		--	100	--	${ }^{\circ} \mathrm{C}$

Notes:

1. Refer to typical Timing Parameter vs. $C_{\text {SLEW }}$ performance charts for additional information when available.
$T_{\text {ON_Delay }}, \mathrm{V}_{\mathrm{S}(\mathrm{SR})}$, and $\mathrm{T}_{\text {Total_ON }}$ Timing Details

Note: Rise and Fall times of the ON signal are 100 ns

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP

Typical Performance Characteristics
RDS ${ }_{\mathrm{ON}}$ vs. V_{DD} and Temperature

RDS $_{\text {ON }}$ vs. V_{D} and V_{DD}

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP
$\mathrm{I}_{\mathrm{ACL}}$ vs. Temperature, V_{DD}, and V_{D}

$\mathrm{V}_{\text {OUT }}$ Slew Rate vs. $\mathrm{C}_{\text {SLEW }}, \mathrm{V}_{\mathrm{DD}}$, and Temperature

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with Soft-start and Protection Features in WLCSP
$\mathrm{V}_{\text {OUT }}$ Slew Rate vs. Temperature, V_{DD}, and $\mathrm{C}_{\text {SLEW }}$

$\mathrm{T}_{\text {Total_ON }}$ vs. $\mathrm{C}_{\mathrm{SLEW}}, \mathrm{V}_{\mathrm{D}}$, and V_{DD}

A $10.5 \mathrm{~m} \Omega, 4$ A Integrated Power Switch
with Soft-start and Protection Features in WLCSP

Typical Turn-on Waveforms $-\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$

Figure 1. Typical Turn $O N$ operation waveform for $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{C}_{\text {SLEW }}=4 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=20 \Omega$

Figure 2. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=12 \mathrm{nF}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LOAD}}=20 \Omega$

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP
Typical Turn-off Waveforms $-\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$

Figure 3. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=4 \mathrm{nF}$, no $\mathrm{C}_{\text {LOAD }}, R_{\text {LOAD }}=20 \Omega$

Figure 4. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=4 \mathrm{nF}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=20 \Omega$

SLG59M1735C Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V . Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If $V_{D D}$ and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A $10 \mu \mathrm{~F}$
$\mathrm{C}_{\text {LOAD }}$ will prevent glitches for rise times of V_{DD} and V_{D} less than 2 ms .
If the ON pin is toggled HIGH before $V_{D D}$ and V_{D} have reached their steady-state values, the IPS timing parameters may differ from datasheet specifications.

The slew rate of output V_{S} follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG59M1735C Voltage Limitation

V_{D} may not exceed $V_{D D}$ for proper operation otherwise the Active Current Limit cannot function properly.

SLG59M1735C Current Limiting

The SLG59M1735C has two modes of current limiting, differentiated by the output (Source pin) voltage.

1. Standard Current Limiting Mode (with Thermal Protection)

When $\mathrm{V}_{\mathrm{S}}>250 \mathrm{mV}$, the output current is initially limited to the Active Current Limit specification given in the Electrical Characteristics table. The current limiting circuit is very fast and responds within a few micro-seconds to sudden loads. When overload is sensed, the current limiting circuit increases the FET resistance to keep the current from exceeding the Active Current Limit.

However, if an overload condition persists, the die temperature rise due to the increased FET resistance while at maximum current can activate Thermal Protection. If the die temperature exceeds the THERM ${ }_{O N}$ specification, the FET is shut completely OFF, allowing the die to cool. When the die cools to the THERM ${ }_{\text {OFF }}$ temperature, the FET is allowed to turn back on. This process may repeat as long as the overload condition is present.

2. Short Circuit Current Limiting Mode (with Thermal Protection)

When $\mathrm{V}_{\mathrm{S}}<250 \mathrm{mV}$ (which is the case with a hard short, such as a solder bridge on the power rail), the current is limited to approximately 500 mA . Thermal Protection is also present, but since the Short Circuit Current Limit is much lower than Standard Current Limit, activation may only occur at higher ambient temperatures.

For more information on Dialog GreenFET3 integrated power switch features, please visit our Documents search page at our website and see App Note "AN-1068 GreenFET3 Integrated Power Switch Basics".

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP

Package Top Marking System Definition

PP - Part Code Field
A - Assembly Site Code Field
R - Revision Code Field
WW - Lot Traceability Field
N - S/N Code Field

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP

Package Drawing and Dimensions
WLCSP 8L 0.96x1.56 mm 0.4P Green Package

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.380	-	0.500	D	1.53	1.56	1.59
A1	0.125	0.150	0.175	E	0.93	0.96	0.99
A2	0.240	0.265	0.290	D1	1.20 BSC		
A3	0.015	0.025	0.035	E1	0.50 BSC		
b	0.195	0.220	0.245	e	0.40 BSC		
N	8 (Bump)						

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch
with Soft-start and Protection Features in WLCSP

SLG59M1735C 8-pin WLCSP PCB Landing Pattern

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with Soft-start and Protection Features in WLCSP

Recommended Reflow Soldering Profile

For successful reflow of the SLG59M1735C a recommended thermal profile is illustrated below:

Note: This reflow profile is for classification/preconditioning and are not meant to specify board assembly profile. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed parameters depicted on figure above.

Please see more information on IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.352 \mathrm{~mm}^{3}$ (nominal).

A $10.5 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with Soft-start and Protection Features in WLCSP

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		 Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
$\begin{array}{\|c\|} \hline \text { WLCSP 8L } \\ 0.96 \times 1.56 \\ \mathrm{~mm} 0.4 \mathrm{P} \\ \text { Green } \end{array}$	8	$\begin{gathered} 0.96 \times 1.56 \mathrm{x} \\ 0.44 \end{gathered}$	3000	3000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	$\begin{aligned} & \text { Pocket BTM } \\ & \text { Width } \end{aligned}$	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width	Tape Thickness
	A0	B0	K0	P0	P1	D0	E	F	W	T
$\begin{gathered} \text { WLCSP 8L } \\ 0.96 \times 1.56 \\ \text { mm 0.4P } \\ \text { Green } \end{gathered}$	1.11	1.7	0.56	4	4	1.5	1.75	3.5	8	0.25

Note: Orientation in carrier: Pin1 is at upper left corner (Quadrant 1).
Refer to EIA-481 specification

A $10.5 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with Soft-start and Protection Features in WLCSP

Revision History

Date	Version	Change
$7 / 31 / 2018$	1.03	Updated I IDD spec Updated I I UpT_OF spec Updated style and formatting
$8 / 11 / 2017$	1.02	Updated Tape and Reel Specs
$3 / 28 / 2017$	1.01	Updated PCB Landing Pattern
$2 / 1 / 2017$	1.00	Production Release

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF2701MX TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1-GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

