General Description

The SLG5NT1458V is a $17 \mathrm{~m} \Omega$ 2.5 A single-channel load switch that is able to switch 0.85 to 5 V power rails. The product is packaged in an ultra-small $1.0 \times 1.6 \mathrm{~mm}$ package.

Features

- $1.0 \times 1.6 \times 0.55 \mathrm{~mm}$ STDFN 8L package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- User selectable ramp rate with external capacitor
- $17 \mathrm{~m} \Omega$ RDS $_{\text {ON }}$ while supporting 2.5 A
- Discharges load when off
- Two Over Current Protection Modes
- Short Circuit Current Limit
- Active Current Limit
- Over Temperature Protection
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Operating Voltage: 2.5 V to 5.5 V

Pin Configuration

8-pin STDFN
(Top View)

Applications

- Notebook Power Rail Switching
- Tablet Power Rail Switching
- Smartphone Power Rail Switching

Block Diagram

Pin Description

Pin \#	Pin Name	Type	Pin Description
1	VDD	PWR	$V_{\text {DD }}$ power for load switch control (2.5 V to 5.5 V)
2	ON	Input	Turns MOSFET $\mathrm{ON}(4 \mathrm{M} \Omega$ pull down resistor) CMOS input with $\mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}>0.85 \mathrm{~V}$
3	D	MOSFET	Drain of Power MOSFET (fused with pin 4)
4	D	MOSFET	Drain of Power MOSFET (fused with pin 3)
5	S	MOSFET	Source of Power MOSFET (fused with pin 6)
6	S	MOSFET	Source of Power MOSFET (fused with pin 5)
7	CAP	Input	Capacitor for controlling power rail ramp rate
8	GND	GND	Ground

Ordering Information

Part Number	Type	Production Flow
SLG5NT1458V	STDFN 8L	Commercial, $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SLG5NT1458VTR	STDFN 8L (Tape and Reel)	Commercial, $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SILEGO

Absolute Maximum Ratings

| Parameter | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DD }}$ | Power Supply | | -- | -- | 7 | V |
| $\mathrm{~T}_{\text {S }}$ | Storage Temperature | | -65 | -- | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{ESD}_{\text {HBM }}$ | ESD Protection | Human Body Model | 2000 | -- | -- | V |
| MSL | Moisture Sensitivity Level | | | 1 | | |
| $\mathrm{~W}_{\text {DIS }}$ | Package Power Dissipation | | -- | -- | 0.4 | W |
| MOSFET IDS | Peak Current from Drain to Source | For no more than 1 ms with 1\% duty cycle | -- | -- | 3.5 | A |
| $\theta_{\text {JA }}$ | Junction to Ambient thermal resis-
 tance | 2-layer FR4 PCB. VD and VS power plane
 area = 1" x 1". 1 oz copper min. | -- | -- | 72 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta_{\text {JC }}$ | Junction to Case thermal resis-
 tance | 2-layer FR4 PCB. VD and VS power plane
 area = 1" x 1". 1 oz copper min. | -- | --- | 70 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
 only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this
 specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. | | | | | | |

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $70^{\circ} \mathrm{C}$ (unless otherwise stated)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {DD }}$	Power Supply Voltage	-20 to $70^{\circ} \mathrm{C}$	2.5	--	5.5	V
IDD	Power Supply Current (PIN 1)	when OFF	--	--	1	$\mu \mathrm{A}$
		when ON, No load	--	70	100	$\mu \mathrm{A}$
$\mathrm{RDS}_{\mathrm{ON}}$	Static Drain to Source ON Resistance	$\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C}$ @ 100 mA	--	17	19	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}} 70^{\circ} \mathrm{C}$ @ 100 mA	--	18.5	20	$\mathrm{m} \Omega$
IDS	Operating Current	$\mathrm{V}_{\mathrm{D}}=0.85 \mathrm{~V}$ to 5.5 V	--	--	2.5	A
V_{D}	Drain Voltage		0.85	--	V_{DD}	V
TON_Delay	ON pin Delay Time	50\% ON to Ramp Begin	0	300	500	$\mu \mathrm{s}$
$\mathrm{T}_{\text {Total_ON }}$	Total Turn On Time	50\% ON to 90\% V	Configurable ${ }^{1}$			ms
		$\begin{aligned} & \text { Example: } \mathrm{CAP}(\mathrm{PIN} 7)=4 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \\ & \mathrm{IDS}=100 \mathrm{~mA} \end{aligned}$	--	1.96	--	ms
		$10 \% \mathrm{~V}_{\mathrm{S}}$ to $90 \% \mathrm{~V}_{\mathrm{S}}$	Configurable ${ }^{1}$			V/ms
TSlewrate	Slew Rate	$\begin{aligned} & \text { Example: } \mathrm{CAP}(\text { PIN } 7)=4 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \\ & \mathrm{IDS}=100 \mathrm{~mA} \end{aligned}$	--	3.0	--	V/ms
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from V_{S} to GND	--	--	500	$\mu \mathrm{F}$
$\mathrm{R}_{\text {DIS }}$	Discharge Resistance		100	150	300	Ω
ON_V ${ }_{\text {IH }}$	High Input Voltage on ON pin		0.85	--	V_{DD}	V
ON_V $\mathrm{V}_{\text {IL }}$	Low Input Voltage on ON pin		-0.3	0	0.3	V
limit $^{\text {LIM }}$	Active Current Limit	MOSFET will automatically limit current when $\mathrm{V}_{\mathrm{S}}>250 \mathrm{mV}$	--	3.7	--	A
	Short Circuit Current Limit	MOSFET will automatically limit current when $\mathrm{V}_{\mathrm{S}}<250 \mathrm{mV}$	--	0.9	--	A
THERM $_{\text {ON }}$	Thermal shutoff turn-on temperature		--	125	--	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (continued)
$\mathrm{T}_{\mathrm{A}}=-20$ to $70^{\circ} \mathrm{C}$ (unless otherwise stated)

Parameter	Description	Conditions	Min.	Typ.	Max.
THERM $_{\text {OFF }}$	Thermal shutoff turn-off temperature		--	100	--
THERM $_{\text {TIME }}$	Thermal shutoff time		--	--	1
${ }^{\circ} \mathrm{C}$					
TOFF_Delay OFF Delay Time	50% ON to V_{S} Fall, $\mathrm{V}_{\text {DD }}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$	--	8	--	$\mu \mathrm{s}$
Notes: 1. Refer to table for configuration details.					

SLG5NT1458V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V . Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If $V_{D D}$ and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A $10 \mu \mathrm{~F}$
$\mathrm{C}_{\text {LOAD }}$ will prevent glitches for rise times of V_{DD} and V_{D} less than 2 ms .
If the ON pin is toggled HIGH before $V_{D D}$ and V_{D} have reached their steady-state values, the IPS timing parameters may differ from datasheet specifications.

The slew rate of output V_{S} follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG5NT1458V Current Limiting

The SLG5NT1458V has two modes of current limiting, differentiated by the output (Source pin) voltage.

1. Standard Current Limiting Mode (with Thermal Protection)

When $\mathrm{V}(\mathrm{S})>250 \mathrm{mV}$, the output current is initially limited to the Active Current Limit specification given in the Electrical Characteristics table. The current limiting circuit is very fast and responds within a few micro-seconds to sudden loads. When overload is sensed, the current limiting circuit increases the FET resistance to keep the current from exceedng the Active Current Limit.

However, if an overload condition persists, the die temperature rise due to the increased FET resistance while at maximum current can activate Thermal Protection. If the die temperature exceeds the THERM ${ }_{\mathrm{ON}}$ specification, the FET is shut completely OFF, allowing the die to cool. When the die cools to the THERM OFF temperature, the FET is allowed to turn back on. This process may repeat as long as the overload condition is present.

2. Short Circuit Current Limiting Mode (with Thermal Protection)

When $\mathrm{V}(\mathrm{S})<250 \mathrm{mV}$ (which is the case with a hard short, such as a solder bridge on the power rail), the current is limited to approximately 500 mA . Thermal Protection is also present, but since the Short Circuit Current Limit is much lower than Standard Current Limit, activation may only occur at higher ambient temperatures.

For more information on Silego GreenFET3 integrated power switch features, please visit our Application Notes page at our website and see App Note "AN-1068 GreenFET3 Integrated Power Switch Basics".
$T_{\text {Total_ON }}$ vs. CAP @ $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$

$$
\begin{array}{r}
\text { SLG5NT1458V T Total ON: ON }(50 \%)-\mathrm{V}_{\mathrm{S}}^{(90 \%)} \\
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \text { IDS }
\end{array}=100 \mathrm{~mA}
$$

$T_{\text {Total_ON }}$ vs. CAP @ $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

$$
\begin{array}{r}
\text { SLG5NT1458V T Total ON: ON }(50 \%)-\mathrm{V}_{\mathrm{S}}(90 \%) \\
\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ}{ }^{\circ} . \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \text { IDS }
\end{array}=100 \mathrm{~mA}
$$

$T_{\text {SLEWRATE }}$ vs. CAP @ $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$

$$
\begin{gathered}
\text { SLG5NT1458V TSLEWRATE: } \mathrm{V}_{\mathrm{S}}(10 \%)-\mathrm{V}_{\mathrm{S}}(90 \%) \\
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{IDS}=100 \mathrm{~mA}
\end{gathered}
$$

$T_{\text {SLEWRATE }}$ vs. CAP @ $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

$$
\begin{gathered}
\text { SLG5NT1458V TSLEWRATE: } \mathrm{V}_{\mathrm{S}}(10 \%)-\mathrm{V}_{\mathrm{S}}(90 \%) \\
\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{IDS}=100 \mathrm{~mA}
\end{gathered}
$$

$\mathrm{T}_{\text {Total_ON }}, \mathrm{T}_{\text {ON_Delay }}$ and Slew Rate Measurement

Package Top Marking System Definition

SLG5NT1458V

Package Drawing and Dimensions

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.10	0.15	0.20
e	0.40 BSC			S	0.2 REF		

SILEGO

SLG5NT1458V

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		Reel \& Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
 STDFN 8L $1 \times 1.6 \mathrm{~mm}$ 0.4 FCC Green	8	$1.0 \times 1.6 \times 0.55$	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
STDFN 8L $1 \times 1.6 \mathrm{~mm}$ 0.4 FFC Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.88 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

SLG5NT1458V

Revision History

Date	Version	Change
$9 / 5 / 2016$	1.05	Updated Power Up/Down Sequencing Considerations Updated Current Limiting Description Updated text and parameter names for clarity
$5 / 25 / 2016$	1.04	Added MSL
$11 / 9 / 2015$	1.03	Updated VD min to 0.85 V

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

