General Description

The SLG6M6201V is a $3.8 \mathrm{~m} \Omega 10 \mathrm{~A}$ single-channel load switch that is able to switch 3.0 V to 3.6 V power rails. The product is packaged in an ultra-small $2 \times 3 \mathrm{~mm}$ package.

Features

- $2 \times 3 \mathrm{~mm}$ STQFN 18L FC package (6 fused pins for drain and 6 fused pins for source)
- Logic level ON pins capable of supporting 1.05 V CMOS Logic
- $3.8 \mathrm{~m} \Omega \mathrm{RDS}_{\mathrm{ON}}$ while supporting 10 A
- Discharges load when off
- Two Over Current Protection Modes (Short Circuit/Active)
- Short Circuit Current Limit
- Active Current Limit
- Over Temperature Protection
- High / Low Current Select
- Automatic Switch from Low to High Current
- Current Sense Output:
- Wide IDS current sensing range: 50 mA to 10 A
- High Current Mode Accuracy
- $\pm 3 \%$ from 3 A to 10 A
- $\pm 6 \%$ from 1 A to 2.9 A
- Low Current Mode Accuracy
- $\pm 10 \%$ from 0.1A to 1 A
- Pb-Free / Halogen-Free / RoHS 6/6 compliant
- Operating Temperature: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Operating Voltage
- $\mathrm{V}_{\mathrm{DD}}: 3.0 \mathrm{~V}$ to 3.6 V
- V_{D} : 3.0 V to 3.6 V

Pin Configuration

18-pin STQFN FC

(Top View)

Applications

- Notebook Power Rail Switching
- Tablet Power Rail Switching
- Server Power Rail Switching
- Telecommunications Equipment Power Rail Switching

SLG6M6201V

Block Diagram

SILEGO

Pin Description

Pin \#	Pin Name	Type	Pin Description
1	ON1	Input	Programmable Logic ($4 \mathrm{M} \Omega$ pull down resistor) CMOS input with $\mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}>0.85 \mathrm{~V}$
2	MODE	Input	ON2 or Current Mode Selection Pin Current Mode L = High Current Mode, 10 A max (Power Up Default) H = Low Current Mode, 750 mA max
3	D	MOSFET	Drain of Power MOSFET (fused pin 3 through pin 8)
4	D	MOSFET	Drain of Power MOSFET (fused pin 3 through pin 8)
5	D	MOSFET	Drain of Power MOSFET (fused pin 3 through pin 8)
6	D	MOSFET	Drain of Power MOSFET (fused pin 3 through pin 8)
7	D	MOSFET	Drain of Power MOSFET (fused pin 3 through pin 8)
8	D	MOSFET	Drain of Power MOSFET (fused pin 3 through pin 8)
9	S	MOSFET	Source of Power MOSFET (fused pin 9 through pin 14)
10	S	MOSFET	Source of Power MOSFET (fused pin 9 through pin 14)
11	S	MOSFET	Source of Power MOSFET (fused pin 9 through pin 14)
12	S	MOSFET	Source of Power MOSFET (fused pin 9 through pin 14)
13	S	MOSFET	Source of Power MOSFET (fused pin 9 through pin 14)
14	S	MOSFET	Source of Power MOSFET (fused pin 9 through pin 14)
15	PG/FAULT\#	Output, Open Drain Only	Pin 15 is a multipurpose status output pin. $10 \mathrm{k} \Omega$ pull up resistor recommended. - When Pin 15 asserts high, it acts as a power good output signal. The device's VS voltage has reached 90% voltage level and the internal N-FET has fully turned on which allows max IDS current at lowest RDSON value. - When Pin 15 asserts low, it acts as a fault\# notification signal. The fault condition is dependent on Pin 2's input level.
16	IOUT	Output	Current Output. $2 \mathrm{k} \Omega$ external resistor and 1 nF external capacitor recommended.
17	GND	GND	Ground
18	VDD	PWR	VDD power for load switch control (3.0 V to 3.6 V)

PG/FAULT\# Status Table

Pin 2 (MODE)	Pin 15 (Fault\#)	Device Status
L (High Current Mode)	Low	VS dropped below 90\% of power rail voltage.
H (Low Current Mode)	Low	Device failed to enter low current mode. See State diagram for more details.

SILEGO

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {DD }}$	Power Supply		--	--	7	V
$\mathrm{~T}_{\text {S }}$	Storage Temperature	Human Body Model	-65	--	150	${ }^{\circ} \mathrm{C}$
ESD $_{\text {HBM }}$	ESD Protection		--	--	2.5	W
W $_{\text {DIS }}$	Package Power Dissipation	Continuous	--	--	V	
MOSFET IDS	Current from Drain to Source	--	--	12	A	
MOSFET IDS	Peak Current from Drain to Source	For no more than 1 ms with 1\% duty cycle	--	--	16	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Temperature

Parameter	Description	Min.	Max.	Unit
T_{O}	Operating Temperature	-10	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Conditions: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
V_{DD}	Power Supply Voltage	$-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3.0	--	3.6	V
	Power Supply Current	when OFF @ $25^{\circ} \mathrm{C}$ Leakage	--	1	4	$\mu \mathrm{~A}$
	when ON, no load, @ $25^{\circ} \mathrm{C}$	--	340	400	$\mu \mathrm{~A}$	
IDS	Drain to Source Current	High Current Mode	--	--	10	A
	Low Current Mode	--	--	750	mA	

MOSFET Characteristics

Conditions: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V},-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
	ON Resistance (High Current Mode)	$\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C} @ 100 \mathrm{~mA}$	3.5	3.6	4.0	$\mathrm{~m} \Omega$
	$\mathrm{~T}_{\mathrm{A}} 85^{\circ} \mathrm{C} @ 100 \mathrm{~mA}$	4.2	4.4	4.7	$\mathrm{~m} \Omega$	
	ON Resistance (Low Current Mode)	$\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C} @ 100 \mathrm{~mA}$	24.7	25.1	27.0	$\mathrm{~m} \Omega$
	$\mathrm{~T}_{\mathrm{A}} 85^{\circ} \mathrm{C} @ 100 \mathrm{~mA}$	29	30	32	$\mathrm{~m} \Omega$	
$\mathrm{~V}_{\mathrm{S}}$	Source Voltage		--	0	$\mathrm{~V}_{\mathrm{D}}$	V
V_{D}	Drain Voltage		3.0	--	3.6	V

SILEGO

ON/OFF Characteristics

Conditions: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{T}_{\text {INIT_DELAY }}$	Power up initiation delay*	See Timing Diagram	--	--	1	ms
Ton delay	ON Logic Delay*	See Timing Diagram	--	--	500	$\mu \mathrm{s}$
TPROG_DELAY	Programmable Delay		--	0.	--	ms
TSLEW	Programmable Slew Rate	$\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\mathrm{S}} \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega \end{aligned}$	--	1.6	--	V/ms
T TOTAL_ON	Total on Delay	$\begin{aligned} & 50 \% \text { ON1 to } V_{S} 90 \%, \\ & C_{L}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega \end{aligned}$	1.4	--	3	ms
Toff_DELAY	Off Delay	50% ON1 to V_{S} Fall, No $C_{L}, R_{L}=20 \Omega$	11	16	25	$\mu \mathrm{S}$
$\mathrm{T}_{\text {PG_DELAY }}$	PG/FAULT\# Driver Assertion Delay*	Logic trigger to PG/FAULT\# asserted	--	--	100	$\mu \mathrm{S}$
TSWITCH_DLY_LH	Low Current mode to High Current Mode switch delay	50\% Pin 2 to High Current Mode	--	--	5	ms
TSWITCH_DLY_HL	High Current mode to Low Current Mode switch delay	50\% Pin 2 to Low Current Mode	--	--	500	$\mu \mathrm{s}$
V_{IH}	High Input Voltage	Pin 1 \& Pin 2	0.85	--	V_{DD}	V
V_{IL}	Low Input Voltage	Pin 1 \& Pin 2	-0.3	--	0.3	V
$\mathrm{V}_{\text {OL_PG }}$	PG/FAULT\# Low Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$, Pull Up Resistor $=10 \mathrm{k} \Omega$, Pin 15	--	--	0.5	V
VREF_PG_RISE	Power Good Rising VREF comparator voltage	$\mathrm{V}_{\mathrm{D}}=3.3 \mathrm{~V}$	--	2.97	--	V
V ${ }_{\text {REF_PG_FALL }}$	Power Good Falling VREF comparator voltage	$\mathrm{V}_{\mathrm{D}}=3.3 \mathrm{~V}$	--	2.80	--	V
limit	Active Current Limit (High Mode)	LIIIIT. $\mathrm{V}_{\text {S }}>500 \mathrm{mV}$, Pin $2=$ Assert Low (High Current Mode)	11.5	12.5	14.0	A
	Active Current Limit (Low Mode)	LIIMIT. $^{\text {V }}$ S 500 mV , Pin 2 = Assert High (Low Current Mode)	--	1.25	--	A
	Short Circuit Current Limit	$\mathrm{V}_{\mathrm{S}}<500 \mathrm{mV}$	--	2.0	--	A
ILIMIT_ACC	Current Limit Accuracy*	Current Limit Accuracy	--	--	± 20	\%
THERM ${ }_{\text {OFF }}$	Thermal Protection Shutoff*	automatic shutoff temperature	--	125	--	${ }^{\circ} \mathrm{C}$
THERM $_{\text {OFF_ACC }}$	Thermal Sensor Accuracy*		--	--	± 10	\%
THERM ${ }_{\text {ON }}$	Thermal Protection turn on*	automatic Turn on temperature	85	--	--	${ }^{\circ} \mathrm{C}$
THERM ${ }_{\text {time }}$	Thermal shutoff reaction time*		--	--	1.0	ms
$\mathrm{I}_{\text {AS_TRIGGER }}$	IDS Current Automatic Low Current to High Current Trigger Level		0.8	1.0	1.2	A
IBLK_HL_TRANS	IDS Current level to block illegal High current to Low Current transition		--	--	750	mA
$\mathrm{R}_{\text {DIS }}$	Equivalent discharge resistance	$\mathrm{V}_{\text {S }}$ discharge resistor	280	300	350	Ω
CapSource	Source Cap	Source to GND	10	100	--	$\mu \mathrm{f}$

[^0]
Current Output Characteristics

Conditions: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (unless otherwise noted)

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
ISENSE	IOUT (Pin 16) Output Current, FET Array High Current Mode 10 A Max	IDS = 10 A, Pin 2 (Mode) = L	--	1000	--	$\mu \mathrm{A}$
		IDS $=1 \mathrm{~A}$, Pin 2 (Mode) $=\mathrm{L}$	--	100	--	$\mu \mathrm{A}$
		IDS $=0.5$ A, Pin 2 (Mode) $=\mathrm{L}$	--	50	--	$\mu \mathrm{A}$
	IOUT (Pin 16) Output Current, FET Array Low Mode 750 mA Max	IDS $=0.75$ A, Pin 2 (Mode) $=\mathrm{H}$	--	600	--	$\mu \mathrm{A}$
		IDS $=0.1 \mathrm{~A}$, Pin 2 (Mode) $=\mathrm{H}$	--	80	--	$\mu \mathrm{A}$
		IDS $=0.05$ A, Pin 2 (Mode) $=\mathrm{H}$	--	40	--	$\mu \mathrm{A}$
ISENSE_ACC	IOUT (Pin 16) Output Current Accuracy, FET Array High Current Mode 10 A Max	IDS $=3$ A to $10 \mathrm{~A}, \operatorname{Pin} 2$ (Mode) $=\mathrm{L}$	--	± 3	--	\%
		IDS $=1$ A to 2.9 A, Pin 2 (Mode) $=\mathrm{L}$	--	± 6	--	\%
	IOUT (Pin 16) Output Current Accuracy, FET Array Low Mode 750 mA Max	IDS $=0.1$ to $1 \mathrm{~A}, \mathrm{Pin} 2($ Mode $)=\mathrm{H}$	--	± 10	--	\%

IOUT Accuracy Test Setup

SLG6M6201V Turn ON

The normal power on sequence is first VDD, with VD only being applied after VDD is > 1 V , and then ON after VD is at least 90% of final value. The normal power off sequence is the power on sequence in reverse.

If VDD and VD are turned on at the same time, then it is possible that a voltage glitch will appear on VS before VDD achieves 1V, which is the VT of the main MOSFET. The size of the glitch is dependent on source and drain capacitance loading and the ramp rate of VDD \& VD.

SLG6M6201V Turn ON

The VS ramp follows a linear path, not an RC limitation provided the ramp is slow enough to not be current limited by load capacitance.

SLG6M6201V Current Limiting

The SLG6M6201V has two forms of current limiting.

12 A Standard Current Limiting Mode (Programmable Level)

Current is measured by mirroring the current through the main MOSFET. This response is a closed loop response and is therefore very fast and current limits in less than a few micro-seconds. There is no difference between peak or constant current limit

Temperature Cutoff

As the $\mathrm{V}(\mathrm{g})$ drops the $\mathrm{Rds}(\mathrm{ON})$ of the main MOSFET will increase, thus limiting the current, but also increasing the power dissipation of the IC. The IC is very small and cannot dissipate much power. Therefore, if a current limit condition is sustained the IC will heat up. If the junction temperature exceeds approximately $125^{\circ} \mathrm{C}$ (Default, Programmable), then $\mathrm{V}(\mathrm{g})$ will be brought low completely shutting off the main MOSFET. As the die cools the MOSFET will be turned back on at $100^{\circ} \mathrm{C}$ (Default, Programmable hysteresis).

If the current limiting condition has not been mitigated then the die will again heat up to $125^{\circ} \mathrm{C}$ (Default, Programmable) and the process will repeat.

Short Circuit Current Limiting Mode

When $\mathrm{V}(\mathrm{S})<500 \mathrm{mV}$, the current is limited to approximately 3 A to 1.5 A . The short circuit current limit is a NVM programmable setting. This current limit is accomplished in the same manner as the Standard Current Limiting Mode with the exception that the current mirror is $15 x$ greater. Because the current mirror is so much larger, a $15 x$ smaller main MOSFET current is required to generate the same V (i). If $\mathrm{V}(\mathrm{S})$ rises above approximately 500 mV , then this mode is automatically switched out.

The short circuit current limiting mode does not protect the device from a sudden short after ON. In the event of a sudden short after ON, the VS pin of the CurrentPAK will switch from 10A @ 5 V to ground within few nanoseconds. During this transition, the device will incur irreversible damage due to a high voltage spike created on VD or VS pins. To prevent this damage, it is recommended to add decoupling capacitors at the VD and VS pins of the CurrentPAK, as shown below, to suppress the voltage spike on the VS and VD pins. For example, assume the power supply max output feeding into the CurrentPAK is 45A max, it is recommended to use an $8000 \mu \mathrm{~F}$ capacitor from VD to GND and a $4000 \mu \mathrm{~F}$ capacitor from VS to GND. The decoupling capacitors should be placed as close to the CurrentPAK as possible. In addition to using the large size decoupling capacitors, minimizing the inductance on PCB power and ground plane is also important to minimize the voltage spike.

SILEGO

Short Circuit Current Limiting Mode

When $\mathrm{V}(\mathrm{S})<500 \mathrm{mV}$, which is the case if there is a solder bridge during the manufacturing process or a hard short on the power rail, then the current is limited to approximately 3 A to 1.5 A . The short circuit current limit is a NVM programmable setting. This current limit is accomplished in the same manner as the Standard. Current Limiting Mode with the exception that the current mirror is $15 x$ greater. Because the current mirror is so much larger, a $15 x$ smaller main MOSFET current is required to generate the same $\mathrm{V}(\mathrm{i})$. If $\mathrm{V}(\mathrm{S})$ rises above approximately 500 mV , then this mode is automatically switched out.

High Current Mode vs. Low Current Mode Selection

The device powers up in high current mode as default setting. In high current mode, the max IDS is 10 A . When Pin 2 is driven from low to high, the internal power FET array shuts down 7 out of 8 banks and keeps 1 out 8 banks active.

Best system practice: The purpose of low current mode is to allow the system to get a more precise current sense reading when instantaneous IDS is between 50 mA to 750 mA . In low current mode, the IOUT (pin 16) output scales up by 8 times to produce a higher current level reading. If the system does not need precise current reading at low IDS, it is recommended to stay in high current mode at all times by tying MODE (pin 2) to GND.

The load switch can only switch to low current mode when instantaneous IDS is less than $\mathrm{I}_{\text {BLK_HL_TRANS }}(750 \mathrm{~mA})$. If the device attempts to switch to low current mode while the instantaneous IDS is higher than $\left.I_{\text {BLK_HL_TRANS }} \overline{(750 ~ m A}\right)$, the device's internal control logic will block this operation. The device keeps the FET array in high current mode to prevent any system failures. The device also asserts FAULT\# (Pin 15) low to notify the system that the attempt to switch to low current mode has failed.

If the IDS current increases above $\mathrm{I}_{\text {AS_TRIGGER }}(1.0 \mathrm{~A}$ typ), the device automatically switches back to high current mode by turning on all eight banks of the FET array. The auto switch delay time is $\mathrm{T}_{\text {SWITCH_DLY_LH }}$ (5 ms max).

Programmable NVM Settings

ON1 and ON2 Pin Configuration

ON1 and ON2 pins are inputs to a small NVM programmable logic cell "PLC".

Bits [2:0]	ON Logic Functions
000	Pin1 = ON1 Pin2 = H/L Select, No Delay

Bits [5:3]	Turn ON Delay Functions
000	0 ms Delay ON1

Note: Delay table not applicable to turn device off.

Power On Ramp Options

The Power On Ramp Options are NVM programmable via the followings bits.

Bits [7:6]	Ramp Options (V_{D} of 3.3V)	Tolerance	
		Typ	Max
00	2 ms linear ramp from output of programmable logic cell "PLC" to 90% of V_{D} assuming < 500μ s delay from PLC out to start of ramp	$1.6 \mathrm{~V} / \mathrm{ms}$	$2.0 \mathrm{~V} / \mathrm{ms}$

Power Good Reference Settings

The Power Good feature is NVM programmable via the followings bits.

Bits [10:8]	$\mathrm{V}_{\mathrm{D}}[\mathrm{V}]$	Under Voltage Detect Level		Tolerance	
		$\begin{array}{c}\text { PG rising on } \\ \text { rising input }\end{array}$	$\begin{array}{c}\text { PG falling on } \\ \text { falling input }\end{array}$	Typical @ 25 ${ }^{\circ} \mathrm{C}$	$\begin{array}{c}\text { Max over PVT } \\ @-20 ~ t o ~ 70 ~\end{array}{ }^{\circ} \mathbf{C}$

Power Good turns on $\sim 100 \mu$ s after power condition is met.

Discharge Settings

The discharge options are NVM programmable via the followings bits.

Bits [12:11]	Resistance [Ω]		
	Min	Typ	Max
01	280	300	350

Temperature Shutdown Settings

The temperature shutdown limit is NVM programmable via the followings bits.

Bits [15:13]	Temperature [${ }^{\circ} \mathrm{C}$]	Hysteresis [${ }^{\circ} \mathrm{C}$]	Tolerance
000	125	25	$\pm 10^{\circ} \mathrm{C}$

SLG6M6201V

Active Current Limit Settings
The Active Current Limit is NVM programmable via the followings bits.

Bits [17:16]	Current Limit [A] (High Current Mode)	Current Limit [A] (Low Current Mode)	Voltage Level of $\mathrm{V}_{\mathbf{S}}$	Tolerance
00	12 (default)	1.5 (default)	$>500 \mathrm{mV}$	$\pm 20 \%$

Short Circuit Current Limit Level

Bits [20:18]	Current Limit [A], VS < 500 $\mathbf{~ m V}$	Short Circuit Current Limit Tolerance
011	2.0	$\pm 50 \%$

Bits [1023:21] are reserved.

SLG6M6201V

State Diagram

Note: Pin 2 (MODE) must stay LOW during initial power up. After the device enters High Current Mode, the system can select Low Current Mode by driving Pin 2 to HIGH level

SLG6M6201V

Initialization Timing Diagram

Note: Pin 2 must stay LOW before the rising edge of Pin 1 . Pin 2 can go HIGH only after V_{S} goes above 90%

SLG6M6201V

H->L \& L->H Transition Timing Diagram

SLG6M6201V

Illegal \& Auto Mode Transition Timing Diagram

SLG6M6201V

Ordering Information

Part Number	Type	Production Flow
SLG6M6201V	STQFN 18L FC	Commercial, $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SLG6M6201VTR	STQFN 18L FC (Tape and Reel)	Commercial, $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Package Top Marking System Definition

SLG6M6201V

Package Drawing and Dimensions

18 Lead TQFN Package 2×3 mm (Fused Lead) JEDEC MO-220, Variation WCEE

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.060	E	1.95	2.00	2.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.15	0.20	0.25	L1	0.45	0.50	0.55
e	0.40 BSC			L2	0.2 REF		
S	0.2 REF			L3	0.2 REF		
							L4

SILEGO

SLG6M6201V

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		Reel \& Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
STQFN 18L FC Green	18	$2 \times 3 \times 0.55$	3,000	3,000	178 / 60	42	168	42	168	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
STQFN 18L FC Green	2.25	3.3	1.1	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $3.30 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silego manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

[^0]: * Not 100\% tested

