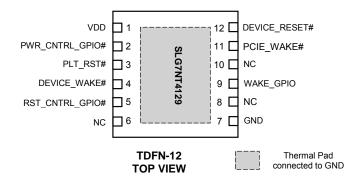


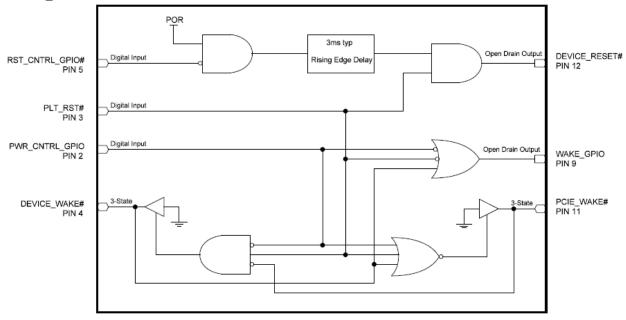
PCIE RTD3


General Description

Silego SLG7NT4129 is a low power and small form device. The SoC is housed in a 2.5mm x 2.5mm TDFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Dynamic Supply Voltage
- RoHS Compliant / Halogen-Free
- Pb-Free TDFN-12 Package


Pin Configuration

Output Summary

- 2 Outputs Open Drain
- 2 Outputs 3-State

Block Diagram

Pin Configuration

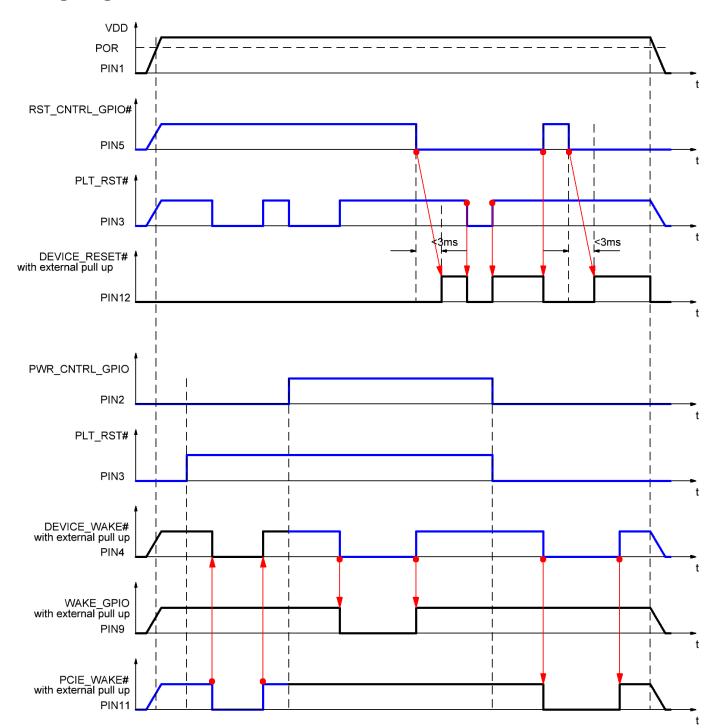
Pin#	Pin Name	Туре	Pin Description
1	VDD	PWR	Supply Voltage
2	PWR_CNTRL_GPIO#	Input	Digital Input
3	PLT_RST#	Input	Digital Input
4	DEVICE_WAKE#	Input/Output	3-State
5	RST_CNTRL_GPIO#	Input	Digital Input
6	NC		Keep floating or connect to GND
7	GND	GND	Ground
8	NC		Keep floating or connect to GND
9	WAKE_GPIO	Output	Open Drain
10	NC		Keep floating or connect to GND
11	PCIE_WAKE#	Input/Output	3-State
12	DEVICE_RESET#	Output	Open Drain
Exposed	Exposed Bottom Pad	GND	Ground
Bottom Pad			

Ordering Information

Part Number	Package Type
SLG7NT4129V	V = TDFN-12
SLG7NT4129VTR	VTR = TDFN-12 - Tape and Reel (3k units)

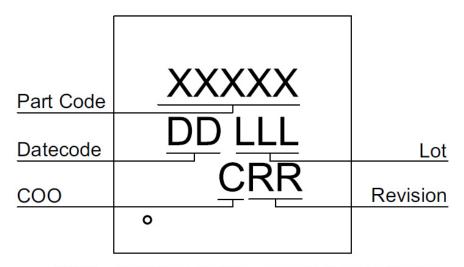
Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{HIGH} to GND	-0.3	7	V
Voltage at input pins	-0.3	7	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	150	°C
Junction temperature		150	°C


Electrical Characteristics

(@ 25°C, unless otherwise stated)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit			
V_{DD}	Supply Voltage		1.71		3.6	V			
ΙQ	Quiescent Current	Static inputs and outputs		1		μΑ			
T _A	Operating Temperature		-40	25	85	°C			
ΙL	Input Leakage Current	Leakage Current for Digital Inputs or outputs in High impedance state	-100		100	nA			
\/	LICH Loyal Input Valtage	Logic Input, at VDD=1.8V	1.1			V			
V_{IH}	HIGH-Level Input Voltage	Logic Input, at VDD=3.3V	1.8			V			
V	LOW Lovel Input Voltage	Logic Input, at VDD=1.8V			0.65	V			
V_{IL}	LOW-Level Input Voltage	Logic Input, at VDD=3.3V			1.1	V			
I _{IH}	HIGH-Level Input Current	Logic Input Pins; V _{IN} =VDD	-1		1	μΑ			
I _{IL}	LOW-Level Input Current	Logic Input Pins; V _{IN} =0V	-1		1	μΑ			
T _{DLY0}	Delay0 Time		2.1	3	3.9	ms			
V	Output Voltage High	3-State, OE=1, I _{OH} = 100μA at VDD=1.8V	1.66			V			
V_{OH}	Output voltage riigii	3-State, OE=1, I _{OH} = 3mA at VDD=3.3V	2.1			v			
	3-State, OE=1, I_{OL} = 100 μ A at VDD=1.8V				0.04				
		3-State, OE=1, I _{OL} = 3mA at VDD=3.3V			0.81				
V_{OL}	Output Voltage Low	Open Drain, I _{OL} = 5mA, at VDD=1.8V			0.340	V			
		Open Drain, I _{OL} = 20mA at VDD=3.3V			0.605				
V_{O}	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V			
		3-State, OE=1, V _{OL} =0.15V, at VDD=1.8V	0.34						
	LOW-Level Output Current	3-State, OE=1, V _{OL} = 0.4V, at VDD=3.3V	1.836			m ^			
I _{OL}		Open Drain, V _{OL} =0.15V, at VDD=1.8V	2.7			mA			
		Open Drain, V _{OL} = 0.4V, at VDD=3.3V	14.6						
T _{SU}	Start up Time	After VDD reaches 1.6V level		7		ms			

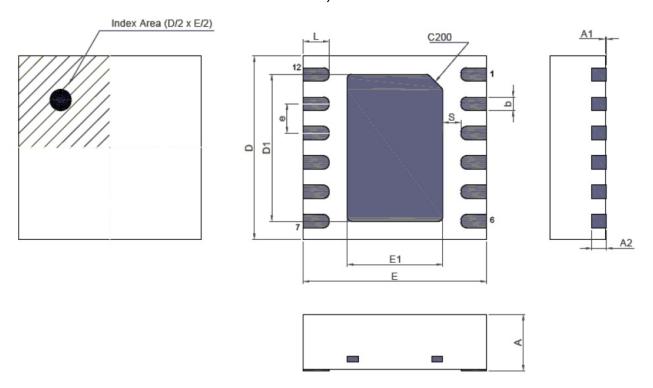


Timing diagram

Package Top Marking

XXXXX - Part ID Field: identifies the specific device configuration

DD – Date Code Field: Coded date of manufacture

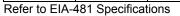

LLL – Lot Code: Designates Lot #
C – COO: Specifies Country of Origin
RR – Revision Code: Device Revision

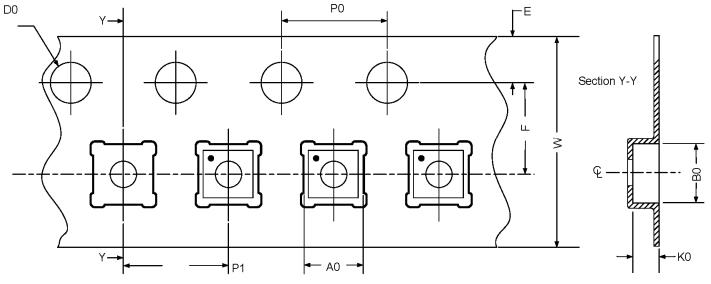
Datasheet Revision	Programming Code Number	Part Code	Revision	Date
1.0	04	4129V	AA	01/23/2013

Package Drawing and Dimensions

12 Lead TDFN Package JEDEC MO-252, Variation 2525E

Unit: mm


Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.70	0.75	0.80	D1	1.95	2.00	2.05
A1	0.005	-	0.060	E1	1.25	1.30	1.35
A2	0.15	0.20	0.25	е	0.40 BSC		
b	0.13	0.18	0.23	L	0.30	0.35	0.40
D	2.45	2.50	2.55	S	0.18	-	-
E	2.45	2.50	2.55				


Tape and Reel Specification

	# of	Nominal	Max	Units	Reel &		er A	Lead	ler B	Pocke	t (mm)
Package Type	Pins	Package Size (mm)	per reel		Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch
TDFN 12L 2.5x2.5mm 0.4P Green	12	2.5x2.5x0.75	3000	3000	178/60	42	168	42	168	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	Α0	В0	K0	P0	P1	D0	E	F	w
TDFN 12L 2.5x2.5mm 0.4P Green	2.75	2.75	1.05	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 4.6875 mm³ (nominal). More information can be found at www.jedec.org.

Datasheet Revision History

Date	Version	Change
11/08/2012	0.1	New design
11/22/2012	0.11	Changed PIN12 type to Open Drain
11/26/2012	0.20	Changed DEVICE_WAKE# and PCIE_WAKE# functionality to bi-directional
01/18/2013	0.21	Some typos in PIN out table are fixed
01/23/2013	1.0	Production Release
06/11/2013	1.01	Housekeeping (fixed block diagram)

Silego Website & Support

Silego Technology Website

Silego Technology provides online support via our website at http://www.silego.com/. This website is used as a means to make files and information easily available to customers.

For more information regarding Silego Green products, please visit:

http://greenpak.silego.com/ http://greenpak2.silego.com/ http://greenfet.silego.com/ http://greenfet2.silego.com/ http://greenclk.silego.com/

Products are also available for purchase directly from Silego at the Silego Online Store at http://store.silego.com/.

Silego Technical Support

Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest software releases are available at the Silego website or can be requested directly at info@silego.com.

For specific GreenPAK design or applications questions and support please send email requests to GreenPAK@silego.com

Users of Silego products can receive assistance through several channels:

Online Live Support

Silego Technology has live video technical assistance and sales support available at http://www.silego.com/. Please ask our live web receptionist to schedule a 1 on 1 training session with one of our application engineers.

Contact Your Local Sales Representative

Customers can contact their local sales representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. More information regarding your local representative is available at the Silego website or send a request to info@silego.com

Contact Silego Directly

Silego can be contacted directly via e-mail at info@silego.com or user submission form, located at the following URL: http://support.silego.com/

Other Information

The latest Silego Technology press releases, listing of seminars and events, listings of world wide Silego Technology offices and representatives are all available at http://www.silego.com/

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Delay Lines/Timing Elements category:

Click to view products by Silego manufacturer:

Other Similar products are found below:

MC100EP195BFAG XDL20-3-050S HMC910LC4B HMC877LC3 DS1010-250 DS1023S-50+ DS1100LU-150 DS1100LU-20+ DS1100LU-25+ DS1100LU-30+ DS1100LU-35 DS1100LU-45 DS1100LU-500+ DS1100LU-75+ DS1100U-250 DS1100U-30+ DS1110E-150+ DS1110E-75+ DS1110LE-500+ DS1110S-100+ DS1110S-250+ DS1110S-300+ DS1110S-50+ DS1110S-500+ DS1100U-45+ DS1100U-40+ DS1100U-25+ DS1100LU-50+ DS1100LU-250+ DS1100U-60+ DS1100U-50+ DS1100U-150+ DS1100U-100+ DS1100U-50+ DS1135LU-30+ SY100E196JY DS1813R-10+ DS1010-100 MC100EP196BMNG NB6L295MMNG DS1135Z-6 DS1135Z-25+ DS1135Z-15+ DS1135Z-10+ DS1135LZ-12+ DS1100Z-50+ DS1100Z-200+ DS1100LZ-60+ DS1100LZ-500+ DS1100LZ-50+ DS1100LZ-50+