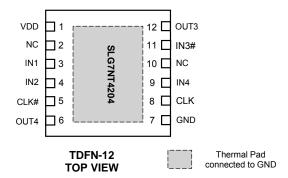


SLG7NT4204 GreenPAK 2[™] GLUE LOGIC


General Description

Silego GreenPAK 2 SLG7NT4204 is a low power and small form device. The SoC is housed in a 2.5mm x 2.5mm TDFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- +3.3V Supply Voltage
- RoHS Compliant / Halogen-Free
- Pb-Free TDFN-12 Package

Pin Configuration

Output Summary

• 4 Outputs – Push Pull

Pin Configuration

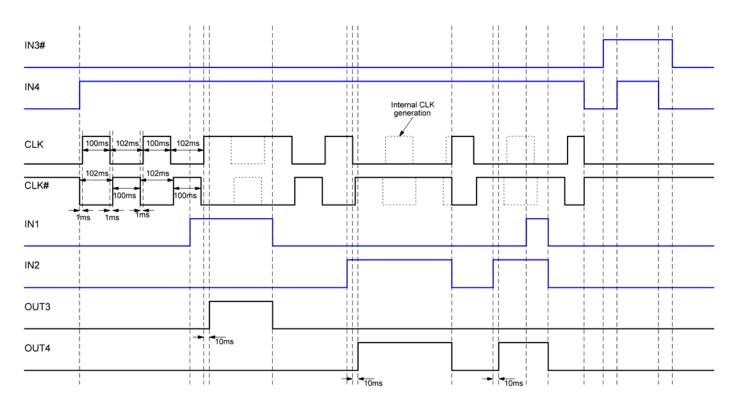
Pin#	Pin Name	Type	Pin Description
1	VDD	PWR	Supply Voltage
2	NC		Keep floating or connect to GND
3	IN1	Input	Analog Input
4	IN2	Input	Analog Input
5	CLK#	Output	Push Pull
6	OUT4	Output	Push Pull
7	GND	GND	Ground
8	CLK	Output	Push Pull
9	IN4	Input	Digital Input
10	NC		Keep floating or connect to GND
11	IN3#	Input	Digital Input
12	OUT3	Output	Push Pull
Exposed	Exposed Bottom Pad	GND	Ground
Bottom Pad			

Ordering Information

Part Number	Package Type
SLG7NT4204V	V = TDFN-12
SLG7NT4204VTR	VTR = TDFN-12 - Tape and Reel (3k units)

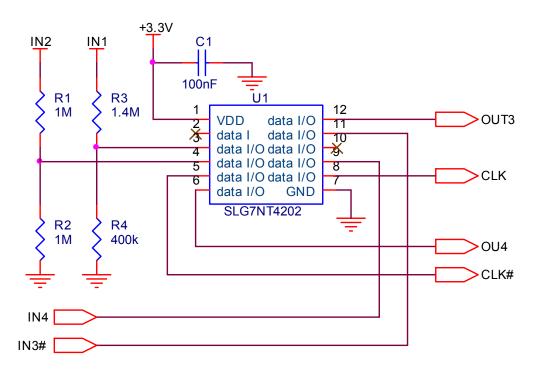
Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{HIGH} to GND	-0.3	7	V
Voltage at input pins	-0.3	7	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	150	°C
Junction temperature		150	°C

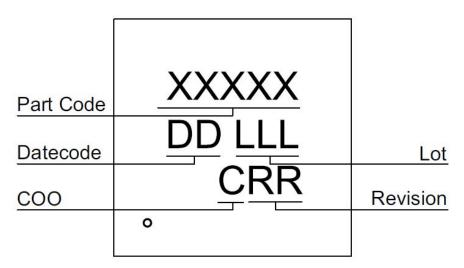

Electrical Characteristics

(@ 25°C, unless otherwise stated)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage		3.0	3.3	3.6	V
ΙQ	Quiescent Current	Static inputs and outputs		80		μΑ
T _A	Operating Temperature		-40	25	85	°C
ΙL	Input Leakage Current	Leakage Current for Digital Inputs or outputs in High impedance state	-1		1	μA
V _{IH}	HIGH-Level Input Voltage	Logic Input	1.8			V
V _{IL}	LOW-Level Input Voltage	Logic Input			1.1	V
I _{IH}	HIGH-Level Input Current	Logic Input Pins; V _{IN} =VDD	-1		1	μΑ
I _{IL}	LOW-Level Input Current	Logic Input Pins; V _{IN} =0V	-1		1	μΑ
T _{DLY0}	Delay0 Time		85.85	101	116.15	ms
T _{DLY1}	Delay1 Time		8.5	10	11.5	ms
T _{DLY2}	Delay2 Time		8.5	10	11.5	ms
T_{DLY3}	Delay3 Time		0.85	1	1.15	ms
V_{OH}	Output Voltage High	Push Pull 1X Drive, I _{OH} = 3mA	2.1			V
V_{OL}	Output Voltage Low	Push Pull 1X Drive, I _{OL} = 3mA			0.81	V
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
Io	Maximal Average or DC Current	Per each chip side			24	mA
I _{OL}	LOW-Level Output Current	Push Pull 1X Drive, V _{OL} = 0.4V	1.836			mA
T _{SU}	Start up Time	After VDD reaches 1.6V level		7		ms



Timing Diagrams



Typical Application Circuit

Package Top Marking

XXXXX - Part ID Field: identifies the specific device configuration

DD - Date Code Field: Coded date of manufacture

LLL – Lot Code: Designates Lot #
 C – COO: Specifies Country of Origin
 RR – Revision Code: Device Revision

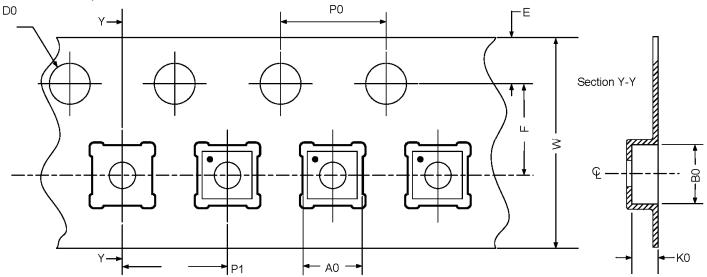
Datasheet Revision	Programming Code Number	Part Code	Revision	Date
0.14	03	4204V	AA	07/18/2013

Package Drawing and Dimensions

12 Lead TDFN Package JEDEC MO-252, Variation 2525E

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.70	0.75	0.80	D1	1.95	2.00	2.05
A1	0.005		0.060	E1	1.25	1.30	1.35
A2	0.15	0.20	0.25	е	0.40 BSC		
b	0.13	0.18	0.23	L	0.30	0.35	0.40
D	2.45	2.50	2.55	S	0.18	-	-
E	2.45	2.50	2.55				


Tape and Reel Specification

	- # of Nominal		Max Units		Reel &	Trailer A		Leader B		Pocket (mm)	
Package Type	Pins	Package Size (mm)	per reel	per box	box Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch
TDFN 12L 2.5x2.5mm 0.4P Green	12	2.5x2.5x0.75	3000	3000	178/60	42	168	42	168	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	В0	K0	P0	P1	D0	E	F	w
TDFN 12L 2.5x2.5mm 0.4P Green	2.75	2.75	1.05	4	4	1.55	1.75	3.5	8

Refer to EIA-481 Specifications

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 4.6875 mm³ (nominal). More information can be found at www.jedec.org.

Datasheet Revision History

Date	Version	Change
06/24/2013	0.11	New design datasheet
06/25/2013	0.12	Corrected device operation
06/26/2013	0.13	Corrected Timing Diagram
07/18/2013	0.14	Updated Device Revision Table

Silego Website & Support

Silego Technology Website

Silego Technology provides online support via our website at http://www.silego.com/. This website is used as a means to make files and information easily available to customers.

For more information regarding Silego Green products, please visit:

http://greenpak.silego.com/ http://greenpak2.silego.com/ http://greenfet.silego.com/ http://greenfet2.silego.com/

http://greenclk.silego.com/

Products are also available for purchase directly from Silego at the Silego Online Store at http://store.silego.com/.

Silego Technical Support

Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest software releases are available at the Silego website or can be requested directly at info@silego.com.

For specific GreenPAK design or applications questions and support please send email requests to GreenPAK@silego.com

Users of Silego products can receive assistance through several channels:

Contact Your Local Sales Representative

Customers can contact their local sales representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. More information regarding your local representative is available at the Silego website or send a request to info@silego.com

Contact Silego Directly

Silego can be contacted directly via e-mail at info@silego.com or user submission form, located at the following URL: http://support.silego.com/

Other Information

The latest Silego Technology press releases, listing of seminars and events, listings of world wide Silego Technology offices and representatives are all available at http://www.silego.com/

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Silego manufacturer:

Other Similar products are found below:

74HC85N NLUIG32AMUTCG NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G
NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G
NLV74HC02ADR2G 74HC32S14-13 74LS133 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G
NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG
74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG
NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG
NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G