

Application Note: SM80593L High Efficiency, 1MHz, 3A Synchronous Step Down Regulator Advanced Design Specification

General Description

The SM80593L is a high efficiency 1MHz synchronous step down DC/DC regulator, which is capable of delivering up to 3A output current. It can operate over a wide input voltage range from 2.5V to 5.5V and integrate main switch and synchronous switch with very low $R_{DS(ON)}$ to minimize the conduction loss.

The SM80593L integrates reliable latch off function when output over voltage, output short or thermal shutdown happens.

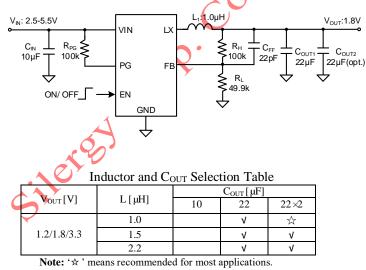
The low output voltage ripple, the small external inductor and the capacitor sizes are achieved with 1MHz switching frequency.

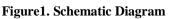
Ordering Information

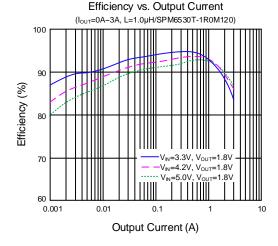
SM80593 □(□□□)	
	– Package Code	
	- Optional Spec (Code
Ordering Number	Package type	Note

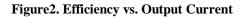
DFN1.5×1.5-6

Features

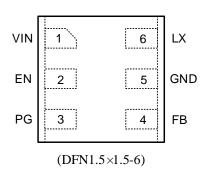

- 2.5V to 5.5V Input Voltage Range
- 55µA Low Quiescent Current
- Low R_{DS(ON)} for Internal Switches (Top/Bottom): 85mΩ /60mΩ
- High Switching Frequency 1MHz Minimizes
 the External Components
- Internal Soft-start Limits the Inrush Current
- 100% Dropout Operation
- Power Good Indicator
- Reliable Latch off Function When:
 - Output Short
 - Thermal Shutdown
 - Output Voltages 120% of Regulated Voltage
- Output Auto Discharge Function
- RoHS Compliant and Halogen Free
- Compact Package: DFN1.5×1.5-6

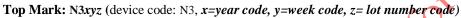

Applications

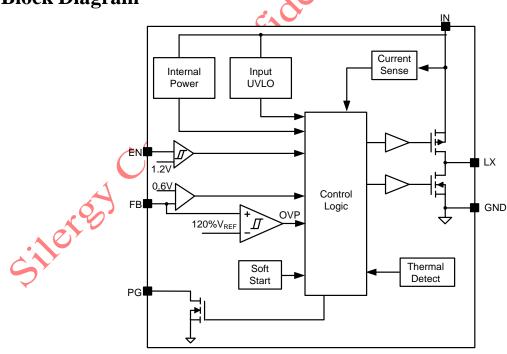

- Set Top Box
- USB Dongle
- Media Player
- Smart Phone

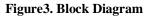

Typical Application

SM80593LDQC






Pin out (Top View)



Pin Name	Pin No.	Pin Description	
	1 11 1 10.		
VIN	1	Input pin. Decouple this pin to GND pin with at least a 10µF ceramic capacitor.	
EN	2	Enable control. Pull high to turn on. Do not leave it floating.	
PG	3	Power good indicator. Power good indicator (open drain output). Low if the output < 90% or the output >120% of regulation voltage. High otherwise. Connect a pull-up resistor to the input.	
FB	4	Output feedback pin. Connect this pin to the center point of the output resistor divider (as shown in Figure 1) to program the output voltage: $V_{OUT}=0.6 \times (1+R_H/R_L)$.	
GND	5	Ground pin.	
LX	6	Inductor pin. Connect this pin to the switching node of inductor.	

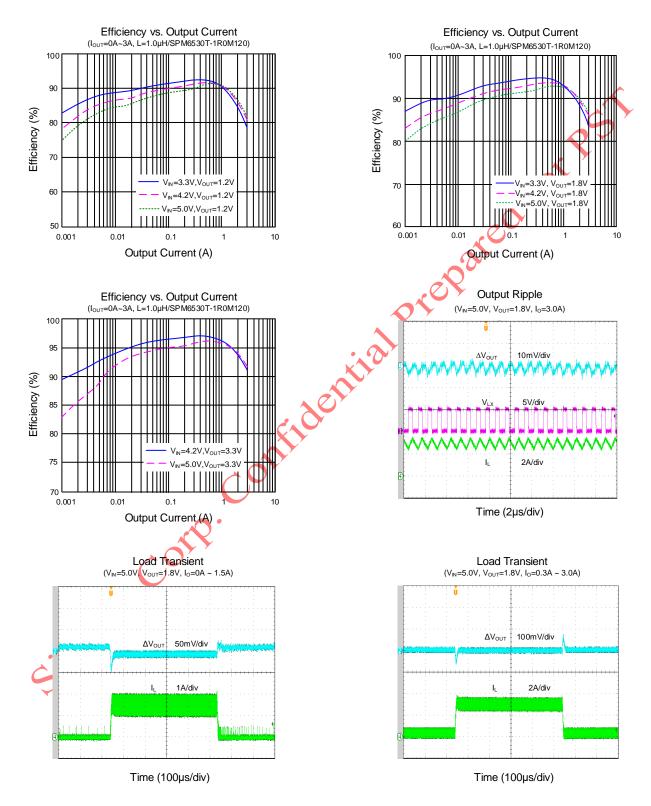
Block Diagram

Absolute Maximum Ratings (Note 1)

Supply Input Voltage	0.3V to 6.0V
FB, EN, PG Voltage	
LX Voltage	0.3V $^{(*1)}$ to 6.0V $^{(*2)}$
Power Dissipation, PD @ TA = 25C	1.3W
Package Thermal Resistance (Note 2)	
θ _{JA}	75 C/W
θ _{JC}	
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	
^(*1) LX Voltage Tested Down to -3V <20ns	
^(*2) LX Voltage Tested Up to +7V <20ns	
Recommended Operating Conditions (Note 3)	× C
Supply Input Voltage	2.5V to 5.5V
Junction Temperature Range	40 °C to 125 °C
Ambient Temperature Range	
Ambient Temperature Range	
کی مر	
$\sim 0^{\circ}$	
••	
\sim	
\mathbf{A}	
Silerey	
5	
▼	

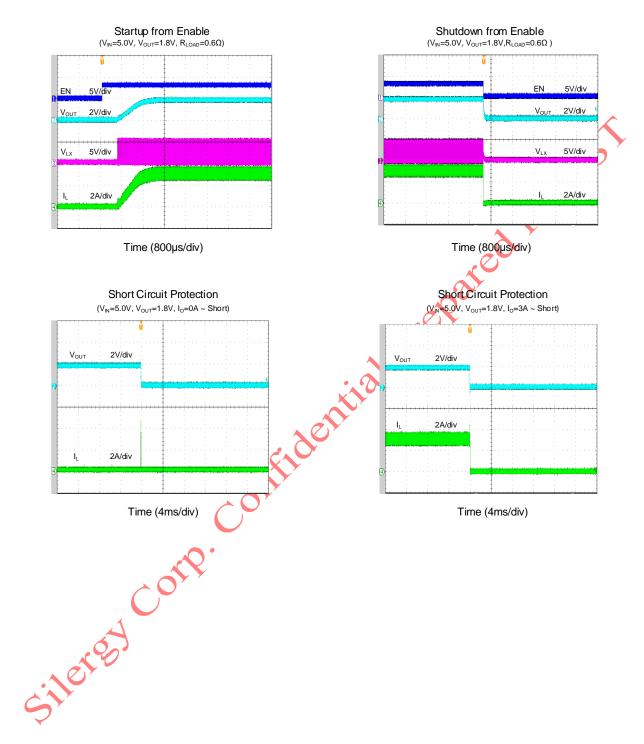
Electrical Characteristics

V _{IN} V _{UVLO} V _{YST} I _Q SHDN V _{REF} R _{DIS}	$V_{FB}=105\% \times V_{REF}$ $V_{EN}=0V$ $I_{OUT}=0.5A, CCM$	2.5 0.591	2.45 150 55 0.1	5.5 2.5	V V mV µA
V _{YST} I _Q SHDN V _{REF}	V _{EN} =0V	0.501	150 55	2.5	mV
V _{YST} I _Q SHDN V _{REF}	V _{EN} =0V	0.501	55		
SHDN V _{REF}	V _{EN} =0V	0.501		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	μA
V _{REF}		0.501	0.1		
	I _{OUT} =0.5A, CCM	0.501			μA
R _{DIS}		0.391	0.6	0.609	V
			50 🔏		Ω
DS(ON)1			85		mΩ
DS(ON)2			60		mΩ
V _{EN,H}		1.2	· ·		V
V _{EN,L}				0.4	V
PG,UVP			90		%
VP,DLY	,eP		10		us
PG,OVP			120		%
OVP,DLY	. ?		20		us
DN,MIN			50		ns
D _{MAX}		100			%
DN,DLY	from EN high to LX start switching		0.5		ms
tss 🕺	V _{OUT} from 0% to 100%		1		ms
fsw 🔨	I _{OUT} =0.5A, CCM		1		MHz
MT,TOP		3.5			А
T _{SD}			160		C
	DS(ON)2 VEN,H VEN,L PG,UVP VP,DLY PG,OVP VP,DLY DN,MIN DMAX DN,DLY tss fsw MT(TOP	DS(ON)2 VEN,H VEN,L PG,UVP VP,DLY VP,	DS(ON)2 VEN,H PG,UVP VP,DLY PG,OVP VP,DLY VP,DLY VP,DLY VP,DLY DN,MIN DMAX from EN high to LX start switching tss Vour from 0% to 100% fsw Iout=0.5A, CCM MTTOP 3.5	DS(ON)2 60 VEN,H 1.2 VEN,L 90 VPG,UVP 90 VP,DLY 10 PG,OVP 120 VP,DLY 20 DN,MIN 50 DMAX 100 fromEN high to LX start 0.5 tss Vour from 0% to 100% 1 fsw 10ur=0.5A, CCM 1 MTTOP 3.5 50	DS(ON)2 60 VEN,H 1.2 VEN,L 0.4 PG,UVP 90 VP,DLY 10 PG,OVP 120 VP,DLY 20 VP,DLY 50 DN,MIN 50 DMAX 100 fromEN high to LX start 0.5 SV0UT from 0% to 100% 1 fsw Iout=0.5A, CCM 1 MITTOP 3.5


Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} of SM80593L is measured in the natural convection at $T_A = 25^{\circ}$ C on a 2-oz two-layer Silergy evaluation board. Pin 6 is the case position for θ_{JC} measurement.

Note 3: The device is not guaranteed to function outside its operating conditions.



Silergy Corp. Confidential- Prepared for Customer Use Only 5 All Rights Reserved.

SM80593L

Operation

The SM80593L is a high efficiency 1MHz synchronous step down DC/DC regulator, which is capable of delivering up to 3A output current. It can operate over a wide input voltage range from 2.5V to 5.5V and integrate main switch and synchronous switch with very low $R_{DS(ON)}$ to minimize the conduction loss.

The SM80593L integrates reliable latch off function when output over voltage, output short or thermal shutdown happens.

The low output voltage ripple, the small external inductor and the capacitor sizes are achieved with 1MHz switching frequency.

Short Circuit Protection

After the soft-start is over, if the output voltage falls below 50% of the regulation level, the IC will turn off both power switches, then will enter short circuit protection. It will remain in this state until the IN or EN voltage is recycled.

Over Voltage Protection

If the output voltage exceeds 120% of the regulation level, the IC will turn off both power switches and turn on the discharge switch, then will enter over voltage protection. It will remain in this state until the IN or EN voltage is recycled.

Thermal Shutdown Protection

If the junction temperature of the SM80593L is greater than the thermal shutdown temperature (TSD), the IC will turn off both power switches, and then will enter thermal shutdown protection. It will remain in this state until the IN or EN voltage is recycled.

Applications Information

Because of the high integration in the SM80593L, the application circuit based on this IC is rather simple. Only the input capacitor C_{IN} , the output capacitor C_{OUT} , the output inductor L and the feedback resistors (R_H and R_L) need to be selected for the targeted applications specifications.

Feedback Resistor Dividers RH and RL

Choose R_H and R_L to program the proper output voltage. To minimize the power consumption under light loads, it is desirable to choose large resistance

values for both R_H and R_L . A value of between $10k\Omega$ and $200k\Omega$ is highly recommended for R_L . If $R_L=100k\Omega$ is chosen, then R_H can be calculated to be: $(V_{aver} - 0.6V) \times R_L$

$$R_{\rm H} = \frac{(V_{\rm OUT} - 0.0 V)}{0.6 V}$$

Input Capacitor CIN

A typical X5R or better grade ceramic capacitor with 10V rating and greater than $10\,\mu\text{F}$ capacitance is recommended. This ceramic capacitor need to be placed really close to the IN and GND pins to minimize the potential noise problem. Care should be taken to minimize the loop area formed by C_{IN} , and the IN/GND pins.

Output Capacitor Cour

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For the best performance, it is recommended to use an X5R or better grade ceramic capacitor with 6.3V rating and greater than $22 \,\mu\text{F}$ capacitance.

Output Inductor L

There are several considerations in choosing this inductor.

 Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum output current. The inductance is calculated as:

$$L = \frac{V_{\text{OUT}}(1 - V_{\text{OUT}}/V_{\text{IN,MAX}})}{f_{\text{SW}} \times I_{\text{OUT,MAX}} \times 40\%}$$

Where f_{SW} is the switching frequency and $I_{OUT,MAX}$ is the maximum load current.

The SM80593L is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

- 2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions. $I_{SAT, MIN} > I_{OUT, MAX} + \frac{V_{OUT}(1-V_{OUT}/V_{IN,MAX})}{2 \times f_{SW} \times L}$
- 3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is

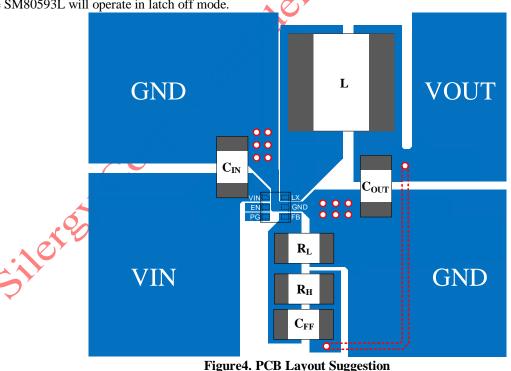
desirable to choose an inductor with $DCR < 30m\Omega$ to achieve a good overall efficiency.

Load Transient Considerations

The SM80593L integrates the compensation components to achieve good stability and fast transient responses. In some application, adding a ceramic capacitor (feed-forward capacitor, C_{ff}) in parallel with R_H may further speed up the load transient responses and is thus recommended for applications with large load transient step requirements. Typically, for 1.2V/1.8V/3.3V output, the R_H , R_L , C_{ff} is recommended as below:

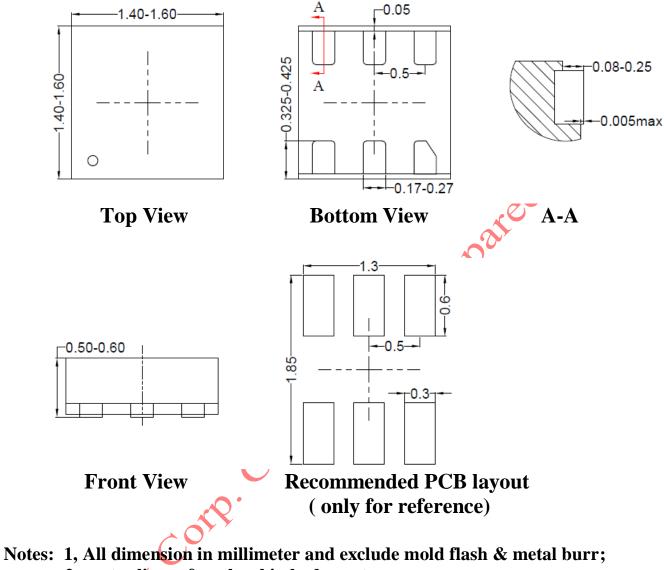
Recommended Component Selectio	n
---------------------------------------	---

V _{OUT}	R _H	R _L	C_{ff}
1.2V	49.9kΩ	49.9kΩ	22pF
1.8V	100kΩ	49.9kΩ	22pF
3.3V	100kΩ	22.1kΩ	22pF


OCP Protection Method

With load current increasing, as soon as the high side FET current gets higher than peak current limit threshold, the high side FET will turn off. If the load current continues to increase, the output voltage will drop. When the output voltage falls below 50% of the regulation level, the output UVP will be detected and the SM80593L will operate in latch off mode.

Layout Design


The layout design of the SM80593L regulator is relatively simple. For the best efficiency and minimum noise problems, the following components should be placed close to the IC: C_{IN} , L, R_{H} and R_{L} .

- 1) It is desirable to maximize the PCB copper area connecting to the GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
- C_{IN} must be close to the Pins IN and GND. The loop area formed by C_{IN} and GND must be minimized.
- 3) The PCB copper area associated with the LX pin must be minimized to avoid the potential noise problem.
- The components R_H, R_L and the trace connecting to the FB pin must NOT be adjacent to the LX net on the PCB layout to avoid the noise problem.

2, center line refers the chip body center

silei

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Silergy manufacturer:

Other Similar products are found below :

NCP1218AD65R2G_NCP1244BD065R2G_NCP1336ADR2G_NCP6153MNTWG_NCP81101BMNTXG_NCP81205MNTXG_SJE6600 AZ7500BMTR-E1_SG3845DM_NCP1250BP65G_NCP4204MNTXG_NCP6132AMNR2G_NCP81102MNTXG_NCP81206MNTXG NCP1240AD065R2G_NCP1240FD065R2G_NCP1361BABAYSNT1G_NCP1230P100G_NX2124CSTR_SG2845M_NCP1366BABAYDR2G NCP81101MNTXG_NCP81174NMNTXG_NCP4308DMTTWG_NCP4308AMTTWG_NCP1366AABAYDR2G_NCP1251FSN65T1G NCP1246BLD065R2G_MB39A136PFT-G-BND-ERE1_NCP1256BSN100T1G_LV5768V-A-TLM-E_NCP1365BABCYDR2G NCP1365AABCYDR2G_NCP1246ALD065R2G_AZ494AP-E1_CR1510-10_NCP4205MNTXG_XRP6141ELTR-F_RY8017_LP6260SQVF LP6298QVF_ISL6121LIB_ISL6225CA_ISL6244HRZ_ISL6268CAZ_ISL6315IRZ_ISL6420AIAZ-TK_ISL6420AIRZ_ISL6420IAZ_ISL64