
Application Note: AN SY5003C

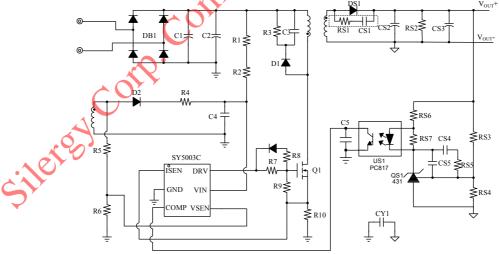
Flyback controller For adapters or chargers

General Description

SY5003C is a PWM/PFM controller with several features to enhance performance of Flyback converters that targeting at adapter or charger applications. It drives Flyback controller in the Quasi-Resonant mode for higher efficiency and better EMI performance. SY5003C adopt burst mode control for improved efficiency and the output current is detected by internal primary detection technology to achieve more reliable Over Current Protection and Short Circuit Protection. The output voltage is achieved by secondary side control technology for good load and line regulation.

Ordering Information

Ordering Number	Package type	Note
SY5003CABC	SOT23-6	

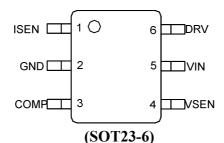

Features

- Quasi-Resonant (QR) mode operation: Valley turnon of the primary MOSFET to achieve low switching losses
- Output current is monitored by primary detection for reliable Over Current Protection and Short Circuit Protection
- PWM/PFM control for higher average efficiency
- Burst mode control for low no load loss and efficiency
- Low start up current: 4µA typical
- Internal high current MOSFET driver: 120mA
- Auto-Recovery for QVP/OCP/SCP/OTP
- Maximum frequency limitation 125kHz
- Compact package: SOT23-6

Applications

- AC/DC Adapters
- Battery Chargers
- Consumer Electronics
- Auxiliary power supplies

Typical Applications



Note: Ground node of current sample resistor must be connected to the ground of BUS line capacitor.

Fig.1 Schematic Diagram

Pinout (top view)

Top Mark: Bdxyz (device code: Bd, x=year code, y=week code, z= lot number code)

Pin	Name	Description			
1	ISEN	Current sense pin. Connect this pin to the source of the primary switch.			
2	GND	Ground pin.			
	Egodheak input nin. The DWM duay avale is determined by voltage level into this nin It's connected to				
3	optocoupler.				
4	VSEN	resistor divider and detects the inductor current zero crossing point.			
5	VIN	Power supply pin.			
6	DRV	Gate driver pin. Connect this pin to the gate of primary MOSPET			
5 VIN Power supply pin.					

Absolute Maximum Ratings (Note 1) Supply Current I_{VIN}------20mA DRV -----ISEN, COMP Power Dissipation, @ TA = 25°C SOT23-6 ------ 1.1W Package Thermal Resistance (Note 2) SOT23-6,θ_{JA}-----SOT23-6, θ_{JC}-------60°C/W Lead Temperature (Soldering, 10 sec.) -----Storage Temperature Range -----.65°℃to 150°C **Recommended Operating Conditions** (Note 3) Junction Temperature Range -------- -40°C to 125°C Ambient Temperature Range -----**Block Diagram** Bias Supply VIN Protection → Hiccup V_{OUT} Detection IOUT_SEN IPK_SEN Cable Comp VSEN DRV PWM PWM DRIVER Generator **ISEN** IOUT Calculato SET **COMP Behavior** (Frequency_set,lpk_set, Fast Transient Response) COMP

Fig.2 Block Diagram

Electrical Characteristics

 $(V_{IN} = 12V, T_A = 25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section	,,			J.F.		
VCC turn-on threshold	V _{VCC,ON}		13.7	14.7	15.7	V
VCC turn-off threshold	V _{VCC,OFF}		6.3	7	8.3	V
VCC OVP voltage	V _{VCC,OVP}		17.5	18.5	19.5	V
Start up Current	I_{ST}	V _{VCC} <v<sub>VCC,OFF</v<sub>		1.2	4	μA
Operating Current	Ivcc	C _L =100pF,f=100kHz		1		mA
Quiescent Current	I_Q			400	1	μΑ
Shunt current in OVP mode	I _{VCC,OVP}	V _{VCC} >V _{VCC,OVP}		7.5	$\triangle X$	mA
Current feedback modulate	or Section	,				
Internal reference voltage	V_{REFI}		0.4137	0.42	0.4263	V
ISEN pin Section				1	•	
Comment I with Walter a	3.7	$V_{FBV} < 0.4V$	0.6	0.7	0.8	V
Current limit Voltage	$V_{ISEN,LIM}$	$V_{FBV} > 0.4V$	0.95	1	1.05	V
Latch Voltage for ISEN	V _{ISEN,EX}		_	2		V
CC feedforward resistor	R _{k2}		225	300	375	Ω
VSEN pin Section			~ ~			
OVP voltage threshold	V _{VSEN,OVP}		13775	1.45	1.5225	V
COMP section						
Internal voltage bias	V_{CVB}	5	6	2.5		V
Sleep mode voltage ON threshold	V _{COMP-ON}			0.4		V
Sleep mode voltage OFF threshold	V _{COMP-OFF}			0.45		V
Internal pull-up resistor	R _{COMPV}			10		kΩ
Gate Driver Section						
Gate driver voltage	V_{Gate}			12		V
Maximum. source current	I _{SOURCE,max} .			120		mA
Maximum. sink current	I _{SINK,max} .			500		mA
Max ON Time	ton,max	Vcomp=2.5V		24		μs
Min ON Time	t _{on,min}				300	ns
Max OFF Time	toff,max		400	500	700	μs
Min OFF Time	Toff,min			1.2		μs
Maximum frequency	\mathbf{f}_{MAX}		110	125	145	kHz
Thermal Section	K					
Thermal Shutdown Temperature	T_{SD}			150		°C

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.

Note 3: Increase VIN pin voltage gradually higher than V_{VIN,ON} voltage then turn down to 12V.

Operation

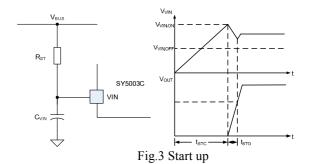
SY5003C is a PWM/PFM controller with several features to enhance performance of Flyback converters.

To achieve higher efficiency and better EMI performance, SY5003C drives Flyback converters in the Quasi-Resonant mode; the start up current of the device is rather small(4 μ A typically) to reduce the standby power loss further and the maximum switching frequency is limited below 125kHz.

In order to improve the stability, the self-adaption compensation is applied.

The output current is monitored by primary side detection technology, and the maximum output current can be programmed in Over Current Protection and Short Circuit Protection. In addition to SY5003C provides Over Voltage Protection(OVP), Over Temperature Protection (OTP), Output voltage OVP protection , VSEN pin short protection ,etc..

SY5003C can be applied in AC/DC adapters, Battery Chargers and other consumer electronics.


SY5003C is available with SOT23-6 package.

Applications Information

Start up

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through a start up resistor R_{SL} . Once V_{VIN} rises up to V_{VIN-ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Flyback transformer could supply enough energy to maintain V_{VIN} above $V_{VIN-OFF}$.

The whole start up procedure is divided into two sections shown in Fig.3. t_{STO} is the C_{VIN} charged up section, and t_{STO} is the output voltage built-up section. The start up time t_{ST} composes of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

The start up resistor R_{ST} and C_{VIN} are designed by rules below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than I_{VIN} OVP.

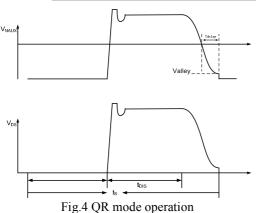
$$\frac{V_{\text{DC,MIN}}}{I_{\text{VIN OVP}}} < R_{\text{ST}} < \frac{V_{\text{DC,MAX}}}{I_{\text{ST}}}$$

Where V_{DC} is the BUS line voltage.

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{\text{VIN}} = \frac{\left(\frac{V_{\text{DC,MIN}}}{R_{\text{ST}}} - I_{\text{ST}}\right) \times t_{\text{ST}}}{V_{\text{VIN ON}}}$$
(2)

(c) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and redo such design flow until the ideal start up procedure is obtained.


Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of Flyback transformer cannot supply enough energy to VIN pin, V_{VIN} will drop down. Once V_{VIN} is below V_{VIN-OFF}, the IC will stop working.

Quasi-Resonant Operation(valley detection)

QR mode operation provides low turn-on switching losses for Flyback converter.

The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage on VSEN pin across zero, the MOSFET would be turned on after 400ns delay.

Output Voltage Control(CV control)

SY5003C is compatible with opto-coupler to achieve output voltage control, which is shown by Fig. 5.

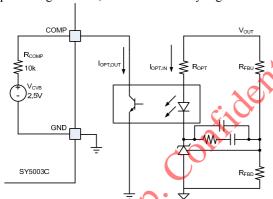


Fig.5 Output voltage feedback circuit

The OFF time of MOSFET is up to the valley detection of VSEN pin, and the ON time of MOSFET is a function of V_{COMP} , so the output power can be controlled by V_{COMP} .

SY5003C integrates an internal 2.5V voltage bias and $10k\Omega$ resistor to interface the output of opto-coupler. V_{COMP} is in relation with the output current of the opto-coupler $I_{OPT,OUT}$ by

$$V_{\text{COMP}} = V_{\text{CVB}} - I_{\text{OPT,OUT}} \times R_{\text{COMP}}$$
 (3)

 R_{OPT} is the resistor across the output node and the anode of the opto-coupler. The selection of R_{OPT} is related with system loop stability, and higher loop gain of the system is achieved by smaller R_{OPT} .

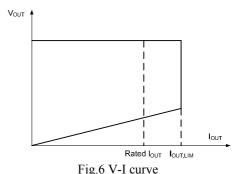
At the same time, R_{OPT} is designed by

$$V_{\text{CVB}} - I_{\text{OPT,IN,MAX}} \times \beta \times R_{\text{COMP}} < V_{\text{COMP,ON}}$$
 (4)

Where β is the transfer ratio of the opto-coupler; $I_{OPT,IN,MAX}$ is the maximum input current through the opto-coupler, which is limited by R_{OPT} .

Output current detection by Primary side(CC control)

The output current is monitored by SY5003C with primary side detection technology. The maximum output current I_{OUT,LIM} can be regulated by:


$$I_{OUT,LIM} = \frac{k_1 \times k_2 \times V_{RBF} \times N_{PS}}{R}$$
 (5)

Where k_1 is the output current weight coefficient; k_2 is the output modification coefficient; V_{REF} is the internal reference voltage; N_{PS} is the turns ratio of the Flyback transformer, R_S is the current sense resistor.

 k_1 , k_2 and V_{REF} are all internal constant parameters, $I_{OUT,LIM}$ can be programmed by N_{PS} and R_S .

$$R_{s} = \frac{k_{1} \times k_{2} \times V_{REF} \times N_{PS}}{I_{OUT}}$$
 (6)

When over current operation or short circuit operation happens. V_{COMP} will be pulled down, and the output current will be limited at $I_{OUT,LIM}$. The V-I curve is shown as Fig.6.

Line regulation modification

The IC provides line regulation modification function to improve line regulation performance of the output current.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage $\Delta V_{\rm ISEN-C}$ is added to ISEN pin during ON time to improve such performance. This $\Delta V_{\rm ISEN-C}$ is adjusted by the upper resistor of the divider connected to VSEN pin.

$$\Delta V_{\text{ISEN,C}} = V_{\text{BUS}} \times \frac{N_{\text{AUX}}}{N_{\text{P}}} \times \frac{1}{R_{\text{VSENU}}} \times k_{3} (7)$$

Where R_{VSENU} is the upper resistor of the divider; k3 is an internal constant as the modification coefficient.

The compensation is mainly related with $R_{VSENU},$ larger compensation is achieved with smaller $R_{VSENU}.$ Normally, R_{VSENU} ranges from $50k\Omega{\sim}150k\Omega.$

Short Circuit Protection (SCP)

There are two kinds of situations, one is the valley signal cannot be detected by VSEN, the other is the valley signal can be detected by VSEN.

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so valley signal cannot be detected by VSEN. There are two cases , the one is without valley detection, MOSFET cannot be turned on until maximum off time is reached. If MOSFET is turned on with maximum off-time for 64 times continuously which can not detected valley, IC will be shut down and enter into hiccup mode. The other is that IC will be shut down and enter into hiccup mode when $V_{\rm VIN}$ below $V_{\rm VIN-OFF}$ within 64 times .

When the output voltage is not low enough to disable valley detection in short condition, \$Y5003C will operate in CC mode until VIN is below V_{IN-OFF}.

In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor R_{AUX} is needed.

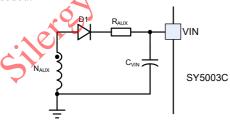


Fig. 7 Filter resistor R_{AUX}

The secondary maximum voltage is limited by the SY5003C. When the VSEN pin signal exceeds 1.45V, SY5003C will stop switching and discharge the VIN voltage. Once V_{VIN} is below $V_{VIN-OFF}$, the IC will shut down and be charged again by HV start up.

VSEN pin short protection

The SY5003C has a protection against faults caused by a shorted VSEN pin or a shorted pull-down resistor. During start-up, the voltage on the VSEN pin is monitored. In normal situations, the voltage on the VSEN pin reaches the sense protection trigger level. When the VSEN voltage does not reach this level, the VSEN pin is shorted and the protection is activated. The IC stops switching and discharge the VIN voltage. Once V_{VIN} is below $V_{VIN-OFF}$, the IC will shut down and be charged again by HV start up. In order to ensure reliable detection, the pull-down resistor should larger than $2k\Omega$.

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized.

$$V_{\text{MOS_DS_MAX}} = \sqrt{2} V_{\text{AC_MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D,F}}) + \Delta V_{\text{S}}$$
(8)
$$V_{\text{D_R_MAX}} = \frac{\sqrt{2} V_{\text{AC_MAX}}}{N_{\text{PS}}} + V_{\text{OUT}}$$
(9)

Where $V_{AC,MAX}$ is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the rated output voltage; $V_{D,F}$ is the forward voltage of secondary power diode; ΔV_{S} is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$I_{MOS_PK_MAX} = I_{P_PK_MAX} (10)$$

$$I_{MOS_RMS_MAX} = I_{P_RMS_MAX} (11)$$

$$I_{D_PK_MAX} = N_{PS} \times I_{P_PK_MAX} (12)$$

$$I_{D_AVG} = I_{OUT} (13)$$

Where $I_{P-PK-MAX}$ and $I_{P-RMS-MAX}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer (N_{PS} and L_M)

 N_{PS} is limited by the electrical stress of the power MOSFET:

$$N_{PS} \le \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{DF}}$$
 (14)

Where $V_{MOS,(BR)DS}$ is the breakdown voltage of the power MOSFET; $V_{AC,MAX}$ is maximum input AC RMS voltage.

In Quasi-Resonant mode, each switching period cycle $t_{\rm S}$ consists of three parts: current rising time $t_{\rm 1}$, current falling time $t_{\rm 2}$ and quasi-resonant time $t_{\rm 3}$ shown in Fig. 8.

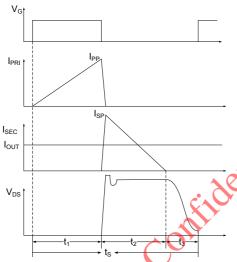


Fig.8 switching waveforms

When the operation condition is with minimum input AC RMS voltage and full load the switching frequency is minimum frequency, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency $f_{S,MIN}$ is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS};

$$N_{PS} \le \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OLT} + V_{D.F}}$$
 (15)

(b) Preset minimum frequency f_{S-MIN};

(c) Compute inductor L_M and maximum primary peak current L_{PK-MAX} ;

$$I_{P_{_PK_MAX}} = \frac{2P_{OUT}}{\eta \times V_{DC_MIN}} + \frac{2P_{OUT}}{\eta \times N_{PS} \times (V_{OUT} + V_{D_{_F}})}$$
(16)
$$+ \pi \sqrt{\frac{2P_{OUT}}{\eta} \times C_{Drain} \times f_{S_MIN}}$$
$$L_{M} = \frac{2P_{OUT}}{\eta \times I_{P_PK_MAX}^{2} \times f_{S_MIN}}$$
(17)

Where C_{Drain} is the parasitic capacitance at drain of MOSFET; η is the efficiency; P_{OUT} is rated full load power; V_{DC_MIN} is minimum input DC RMS voltage.

(d) Compute current rising time t₁ and current falling time t₂;

$$t_{1} = \frac{L_{M} \times I_{P_PK_MAX}}{V_{DC_MIN}}$$
(18)
$$t_{2} = \frac{L_{m} \times I_{P_PK}}{N_{PS} \times (V_{OUT} + V_{D_F})}$$
(19)
$$t_{S} = \frac{1}{f_{S_MIN}}$$
(20)

(e) Compute primary maximum RMS current I_{P-RMS-MAX} for the transformer fabrication;

$$I_{P_{PMS_MAX}} = \frac{\sqrt{3}}{3} I_{P_{PK_MAX}} \sqrt{\frac{t_1}{t_s}}$$
 (21)

(f) Compute secondary maximum peak current $I_{S\text{-PK-MAX}}$ and RMS current $I_{S\text{-RMS-MAX}}$ for the transformer fabrication .

$$I_{S_{PK_MAX}} = N_{PS} \times I_{P_{PK_MAX}} (22)$$

$$I_{S_{RMS_MAX}} = \frac{\sqrt{3}}{3} N_{PS} \times I_{P_{PK_MAX}} \times \sqrt{\frac{t_2}{t_S}} (23)$$

Transformer design (NP, NS, NAUX)

The design of the transformer is similar with ordinary Flyback transformer. The parameters below are necessary:

Necessary parameters				
Turns ratio	N_{PS}			
Inductance	L_{M}			
Primary maximum current	I _{P-PK-MAX}			
Primary maximum RMS current	I _{P-RMS-MAX}			
Secondary maximum RMS current	I _{S-RMS-MAX}			

The design rules are as followed:

- (a) Select the magnetic core style, identify the effective area $A_e\,;$
- **(b)** Preset the maximum magnetic flux ΔB ;

 $\Delta B=0.22\sim0.26T$

(c) Compute primary turn N_P ;

$$N_{p} = \frac{L_{M} \times I_{P_PK_MAX}}{\Delta B \times A_{e}} (24)$$

(d) Compute secondary turn N_S;

$$N_{\rm S} = \frac{N_{\rm P}}{N_{\rm nc}} (25)$$

(e) compute auxiliary turn N_{AUX} ;

$$N_{AUX} = N_S \times \frac{V_{VIN}}{V_{OUT}}$$
 (26)

Where V_{VIN} is the working voltage of VIN pin (11V~15V is recommended);

(f) Select an appropriate wire diameter;

With I_{P-RMS-MAX} and I_{S-RMS-MAX}, select appropriate wire to make sure the current density ranges from 4A/mm² to 10A/mm².

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Input capacitor C_{BUS}

Generally, the input capacitor C_{BUS} is selected by $C_{BUS} = 2 \sim 3 \mu F/W$

Or more accurately by

$$C_{\text{BUS}} = \frac{\arcsin(1 - \frac{V_{\text{Do-MIN}}}{\sqrt{2}V_{\text{AC_MIN}}}) + \frac{\pi}{2}}{\pi} \frac{P_{\text{OUT}}}{\eta} \frac{1}{2f_{\text{IN}}V_{\text{AC_MIN}}^2(1 - \frac{V_{\text{DC_MIN}}}{\sqrt{2}V_{\text{AC_MIN}}})^2}$$
(27)

Where $V_{DC\text{-}MIN}$ is the minimum voltage of BUS line and ΔV_{BUS} is the voltage ripple of BUS line; f_{IN} is AC line frequency;

RCD snubber for MOSFET

The power loss of the snubber P_{RCD} is evaluated first.

$$P_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D_F}}) + \Delta V_{\text{S}}}{\Delta V_{\text{S}}} \times \frac{L_{\text{K}}}{L_{\text{M}}} \times P_{\text{OUT}} \quad (28)$$

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; $V_{D\text{-}F}$ is the forward voltage of the power diode; ΔV_S is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; P_{OUT} is the output power.

The R_{RCD} is related with the power loss:

$$R_{RCD} = \frac{\left[N_{PS} \times (V_{OUT} + V_{D_F}) + \Delta V_S\right]^2}{P_{PCD}}$$
 (29)

The C_{RCD} is related with the voltage ripple of the snubber ΔV_{C-RCD} :

$$C_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D_F}}) + \Delta V_{\text{S}}}{R_{\text{RCD}} \times f_{\text{S}} \times \Delta V_{\text{C RCD}}}$$
(30)

Layout

- (a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit;
- (b) The ground of the BUS line capacitor, the ground of the current sample resistor and the signal ground of the IC should be connected in a star connection;
- (c) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.

Design Example

A design example of typical application is shown below step by step.

#1. Identify Design Specification

Design Specificat	Design Specification						
V _{AC,MIN}	90V	V _{AC,MAX}	264V				
V _{OUT}	12V	I_{OUT}	2A				
P _{OUT}	24W	η	86%				
$f_{IN.MIN}$	60KHz						

#2.Transformer Design $(N_{PS} \text{ and } L_M)$

Refer to Power Device Design

Conditions						
V _{AC,MIN}	90V	V _{AC-MAX}	264V			
P _{OUT}	24W	f_{S-MIN}	60kHz			
Parameters designed	Parameters designed					
V _{MOS-(BR)DS}	600V	ΔV_{S}	75V			
C_{Drain}	100pF	$V_{D,F}$	1V			

(a)Compute turns ratio N_{PS} first;

$$\begin{split} N_{PS} & \leq \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D,F}} \\ & = \frac{600V \times 0.9 - \sqrt{2} \times 264V - 75V}{12V + 1V} \\ & = 7.05 \end{split}$$

N_{PS} is set to

$$N_{PS} = 7$$

(b) $f_{S,MIN}$ is preset;

$$f_{S MIN} = 60 kHz$$

(c) Compute inductor L_M and maximum primary peak current I_{P,PK,MAX};

$$\begin{split} I_{P,PK,MAX} &= \frac{2P_{OUT}}{\eta \times (\sqrt{2}V_{AC,MIN} - \Delta V_{BUS})} + \frac{2P_{OUT}}{\eta \times N_{PS} \times (V_{OUT} + V_{D,F})} + \pi \sqrt{\frac{2P_{OUT}}{\eta} \times C_{Drain} \times f_{S,MIN}} \\ &= \frac{2 \times 24W}{0.86 \times (\sqrt{2} \times 90V - 0.3 \times \sqrt{2} \times 90V)} + \frac{2 \times 24W}{0.86 \times 7 \times (12V + 1V)} + \pi \times \sqrt{\frac{2 \times 24W}{0.86} \times 100pF \times 60KHz} \\ &= 1.297A \end{split}$$

$$\begin{split} L_{m} &= \frac{2P_{OUT}}{\eta \times I_{P,PK,MAX}^{2} \times f_{S,MIN}} \\ &= \frac{2 \times 24W}{0.86 \times (1.297A)^{2} \times 60KHz} \\ &= 0.553mH \end{split}$$

Set

 $L_{M}=0.55mH$

(d) Compute current rising time t_1 and current falling time t_2 ;

$$t_{_{1}} = \frac{L_{_{M}} \times I_{_{P,PK,MAX}}}{V_{_{BUS}}} = \frac{0.55 mH \times 1.297 A}{\sqrt{2} \times 90 V} = 5.61 \mu s$$

$$t_{2} = \frac{L_{m} \times I_{P,PK,MAX}}{N_{PS} \times (V_{OUT} + V_{D,F})} = \frac{0.55mH \times 1.297A}{7 \times (12V + 1V)} = 7.84\mu s$$

$$t_3 = \pi \times \sqrt{L_M \times C_{Drain}} = \pi \times \sqrt{0.55 \text{mH} \times 100 \text{pF}} = 0.74 \mu \text{s}$$

$$t_s = t_1 + t_2 + t_3 = 5.61 \mu s + 7.84 \mu s + 0.74 \mu s = 14.19 \mu s$$

(e) Compute primary maximum RMS current I_{P-RMS-MAX} for the transformer fabrication;

$$I_{P,RMS,MAX} = \frac{\sqrt{3}}{3} I_{P,PK,MAX} \times \sqrt{\frac{t_1}{t_S}} = \frac{\sqrt{3}}{3} \times 1.261 A \times \sqrt{\frac{5.61 \mu s}{14.19 \mu s}} = 0.471 A$$

 $\textbf{(f)} \ Compute \ secondary \ maximum \ peak \ current \ I_{S\text{-}PK\text{-}MAX} \ and \ RMS \ current \ I_{S\text{-}RMS\text{-}MAX} \ for \ the \ transformer \ fabrication \ .$

$$\begin{split} &I_{\text{S_PK_MAX}} \! = \! N_{\text{PS}} \! \times \! I_{\text{P_PK_MAX}} = 7 \! \times \! 1.297 A = 9.081 A \\ &I_{\text{S,RMS,MAX}} = N_{\text{PS}} \! \times \! \frac{\sqrt{3}}{3} I_{\text{P,PK,MAX}} \! \times \! \sqrt{\frac{t_2}{t_8}} = 7 \! \times \! \frac{\sqrt{3}}{3} \! \times \! 0.905 A \! \times \! \sqrt{\frac{7.84 \mu \text{s}}{14.19 \mu \text{s}}} = 3.898 A \end{split}$$

#3. MOSFET and Diode Design

Conditions	·O.		
V_{AC-MAX}	264V	N _{PS}	7
V_{OUT}	12V	$V_{D ext{-}F}$	1V
ΔV_{S}	75V	η	86%

(a) Compute the voltage and the current stress of MOSFET:

(a) Compute the voltage and the current stress of N

$$V_{\text{MOS DS MAX}} = \sqrt{2}V_{\text{AC_MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D_F}}) + \Delta V_{\text{S}}$$

$$= \sqrt{2} \times 264 \text{V} + 7 \times (12 \text{V} + 1 \text{V}) + 75 \text{V}$$

$$= 539 \text{V}$$

$$I_{MOS_PK_MAX} = I_{P_PK_MAX} = 1.297A$$

$$I_{MOS\ RMS\ MAX} = I_{P\ RMS\ MAX} = 0.471A$$

(b) Compute the voltage and the current stress of secondary power diode

$$V_{D_{_R_MAX}} = \frac{\sqrt{2}V_{AC_MAX}}{N_{PS}} + V_{OUT}$$
$$= \frac{\sqrt{2} \times 264V}{7} + 12V$$
$$= 65.3V$$

$$I_{D_{PK_MAX}} = N_{PS} \times I_{P_{PK_MAX}} = 7 \times 1.297A = 9.081A$$

$$I_{D \text{ AVG}} = I_{OUT} = 2A$$

#4. Start up design

Refer to Start up

Conditions					
$V_{DC,MIN}$	90V×1.414	$V_{DC,MAX}$	264V×1.414		
I_{ST}	4μA (typical)	$V_{\text{IN-ON}}$	14.7V (typical)		
I _{VIN-OVP}	7.5mA (typical)				
Designed by user					
t_{ST}	2s				

(a) R_{ST} is preset

$$R_{_{ST}}\!<\!\frac{V_{_{BUS}}}{I_{_{ST}}}\!=\!\frac{90V\!\times\!1.414}{4\mu A}\!=\!31.81M\Omega\;,$$

$$R_{ST} > \frac{V_{BUS}}{I_{VIN_OVP}} = \frac{264V \times 1.414}{7.5 \text{mA}} = 49.77 \text{k}\Omega$$

Set

$$R_{ST} = 6M\Omega$$

(b) Design C_{VIN}

$$C_{VIN} = \frac{(\frac{V_{BUS}}{R_{ST}} - I_{ST}) \times t_{ST}}{V_{VIN,ON}}$$

$$= \frac{(\frac{90V \times 1.414}{R_{ST}} - 4\mu A) \times 2s}{6M\Omega}$$

$$= \frac{6M\Omega}{14.7V}$$

$$= 2.34\mu F$$

Set

$$C_{VIN} = 3.3 \mu F$$

#5. Output voltage control

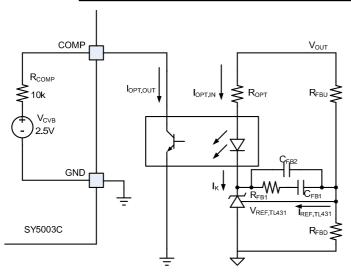


Fig.8 Output voltage feedback circuit

Conditions			X Y
V_{CVB}	2.5V	V _{COMP-ON}	0.4V
R _{COMP}	10kΩ	V_{OPT}	1.2V
β	1	V _{REF,TL431}	2.5V
$I_{K,MIN}$	1mA	$I_{K,MAX}$	100mA
I _{REF,TL431}	2~4μΑ		

Where V_{OPT} is the input forward voltage of the opto-coupler: I_K is the cathode current of the TL431; $I_{REF,TL431}$ is the reference input current of the TL431.

(a) ROPT Design

The maximum input current of the opto-coupler is limited by

$$\begin{split} I_{\text{OPT,IN,MAX}} > & \frac{V_{\text{CVB}}\text{--}V_{\text{COMP-ON}}}{R_{\text{COMP}}} \times \frac{1}{\beta} \\ = & \frac{2.5 \text{V-}0.4 \text{V}}{10 \text{K}\Omega} \times 1 \\ = & 0.21 \text{mA} \end{split}$$

At the same time,

I_{OPT,IN} is limited by the current range of TL431 cathode.

$$I_{K,MAX} > I_{OPT,IN} > I_{K,MIN}$$
And
$$I_{OPT,IN} = \frac{V_{OUT} - V_{OPT} - V_{REF,TL431}}{R_{OPT}}$$

Hence,

$$\begin{split} R_{_{OPT}} < & \frac{V_{_{OUT}}\text{-}V_{_{OPT}}\text{-}V_{_{REF,TL431}}}{I_{_{OPT,IN,MAX}}} \\ = & \frac{12V\text{-}1.2V\text{-}2.5V}{0.21\text{mA}} \\ = & 39.52K\Omega \end{split}$$

$$\begin{split} R_{_{OPT}} > & \frac{V_{_{OUT}} \text{-}V_{_{OPT}} \text{-}V_{_{REF,TL431}}}{I_{_{K,MAX}}} \\ = & \frac{12 \text{V-}1.2 \text{V-}2.5 \text{V}}{100 \text{mA}} \\ = & 83 \Omega \end{split}$$

$$R_{OPT} = 510\Omega$$

$$R_{\text{FBD}} \le \frac{V_{\text{REF,TL431}}}{100I_{\text{DEF,TL431}}} = \frac{2.5V}{100 \times 2\mu A} = 12.5K\Omega$$

$$R_{FBU} = \frac{V_{OUT} - V_{REF,TL431}}{V_{REF,TL431}} \times R_{FBD} = \frac{12V - 2.5V}{2.5V} \times 10K\Omega = 38KC$$

$=\frac{12V-1.2V-2}{100mA}$. <u> v</u>			
$=83\Omega$				
Set				CY
$R_{OPT} = 510\Omega$			4	
(b) resistor divider	design		cot	
To achieve accurate	voltage reference, R _{FBD} i	s limited by	9,7	
$R_{\text{FBD}} \le \frac{V_{\text{REF,TL431}}}{100I_{\text{REF,TL431}}}$	$=\frac{2.5V}{100\times2\mu A}=12.5K\Omega$		odiec	
Set		Q	401	
$R_{FBD}=10K$,	
$R_{FBU} = \frac{V_{OUT} - V_{REF,TL}}{V_{REF,TL431}}$	$\times R_{FBD} = \frac{12V - 2.5V}{2.5V} \times 10$	ΚΩ=38ΚΩ	zepated for the second	
(c) Feedback Loop	Design			
Recommended para	meters		_	
C _{FB1}	100nF	C_{FB2}	22nF	
R _{FB1}	1.5KQ			
#6. Output Current	Protection design			

Refer to Primary-side constant-current control

Conditions						
\mathbf{k}_1	0.5	N _{PS}	7			
V_{REF}	0.42V					
Parameters designed						
I _{OUT,OCP}	2.4A					

 $I_{\text{OUT,LIM}}$ is the maximum output current .

The current sense resistor is

$$\begin{split} R_{S} &= \frac{k_{_{1}} \times V_{_{REF}} \times N_{_{PS}}}{I_{_{OUT}}} \\ &= \frac{0.5 \times 0.42 V \times 7}{2.4 A} \\ &= 0.613 \Omega \end{split}$$

#7. Input Capacitor C_{BUS} Design

Conditions			
$V_{AC,MIN}$	90V	$\Delta m V_{BUS}$	30% V _{AC.MIN}

$$C_{\text{BUS}} = \frac{\arcsin(1 - \frac{\Delta V_{\text{BUS}}}{\sqrt{2} V_{\text{AC,MIN}}}) + \frac{\pi}{2}}{\pi} \times \frac{P_{\text{OUT}}}{\eta} \times \frac{1}{2 f_{\text{IN}} V_{\text{AC,MIN}}^2 [1 - (1 - \frac{\Delta V_{\text{BUS}}}{\sqrt{2} V_{\text{AC,MIN}}})^2]}$$

$$= \frac{\arcsin(1 - \frac{0.3 \times \sqrt{2} \times 90 \text{V}}{\sqrt{2} \times 90 \text{V}}) + \frac{\pi}{2}}{\pi} \times \frac{24 \text{W}}{0.86} \times \frac{1}{2 \times 50 \text{Hz} \times 90 \text{V}^2 \times [1 - (1 - \frac{0.3 \times \sqrt{2} \times 90 \text{V}}{\sqrt{2} \times 90 \text{V}})^2]}$$

 $= 50.45 \mu F$

Set

$$C_{\text{BUS}}$$
=44 μF

#8. set VSEN pin

First identify R_{VSENU} need for line regulation.

Conditions		
k ₃	68	
Parameters Designed	~	
R _{VSENU}	100kΩ 🗻	

Then compute R_{VSEND}

Conditions				
V _{VSEN_OVP}	1.45V	V_{OUT}	12V	
Parameters designed				
V _{OVP}	14V	R _{VSENU}	100kΩ	
N _S /N _{AUX}	1			

$$\begin{split} R_{\text{VSEND}} < & \frac{\frac{V_{\text{VSEN_OVP}}}{V_{\text{OUT}}} \times \frac{N_{\text{S}}}{N_{\text{AUX}}}}{1 - \frac{V_{\text{VSEN_OVP}}}{V_{\text{OUT}}} \times \frac{N_{\text{S}}}{N_{\text{AUX}}}} \times R_{\text{VSENU}} \\ = & \frac{\frac{1.45 \text{V}}{12 \text{V}} \times 1}{1 - \frac{1.45 \text{V}}{12 \text{V}} \times 1} \times 100 \text{k}\Omega \\ = & 15.4 \text{k}\Omega \end{split}$$

$$\begin{split} R_{\text{VSEND}} & \geq \frac{\frac{V_{\text{VSEN_OVP}}}{V_{\text{OVP}}} \times \frac{N_{\text{S}}}{N_{\text{AUX}}}}{1 - \frac{V_{\text{VSEN_OVP}}}{V_{\text{OVP}}} \times \frac{N_{\text{S}}}{N_{\text{AUX}}}} \times R_{\text{VSENU}} \\ & = \frac{\frac{1.45V}{14V} \times 1}{1 - \frac{1.45V}{14V} \times 1} \times 100 \text{k}\Omega \\ & = 11.5 \text{k}\Omega \end{split}$$

$$R_{VSEND} = 12k\Omega$$

#9. Design RCD snubber

$1 - \frac{1.45 \text{V}}{12 \text{V}} \times 1$			
$=15.4k\Omega$			
$R_{\text{VSEND}} \ge \frac{\frac{V_{\text{VSEN_OVP}}}{V_{\text{OVP}}} \times \frac{1}{N}}{1 - \frac{V_{\text{VSEN_OVP}}}{V_{\text{OVP}}} \times \frac{1}{N}}$ $= \frac{\frac{1.45V}{14V} \times 1}{1 - \frac{1.45V}{14V} \times 1}$ $= 11.5k\Omega$	$\frac{N_{s}}{N_{AUX}} \times R_{VSENU}$ $\frac{N_{s}}{N_{AUX}} \times R_{VSENU}$ $00k\Omega$		ared for Hock. A
R _{VSEND} is set to			di
$R_{VSEND} = 12k\Omega$		over	·
#9. Design RCD snubbe	er	ial.Pro	
Refer to Power Device I	Design	Allia	
Conditions	<u> </u>	(C)	
V_{OUT}	12V	ΔV_{S}	75V
N _{PS}	7	L_K/L_M	1%
P _{OUT}	24W		

The power loss of the snubber is

$$P_{RCD} = \frac{N_{PS} \times (V_{OUT} + V_{D_{_F}}) + \Delta V_{S}}{\Delta V_{S}} \times \frac{L_{K}}{L_{M}} \times P_{OUT}$$

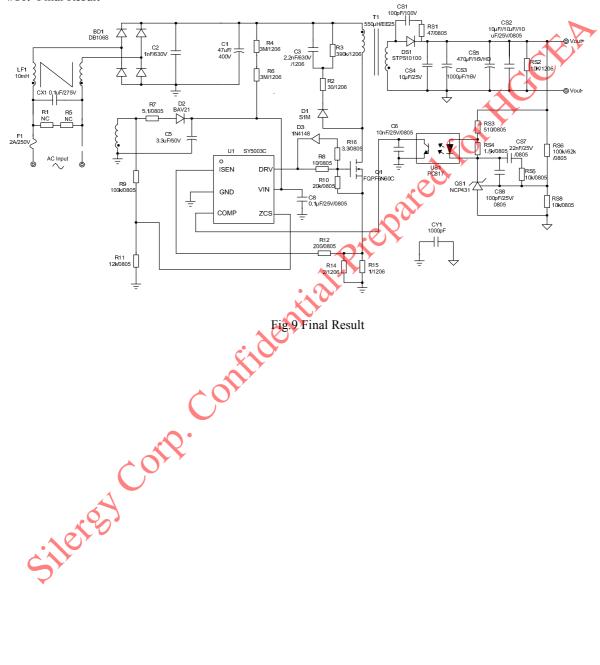
$$= \frac{7 \times (12V + 1V) + 75V}{75V} \times 0.01 \times 24W$$

$$= 0.53W$$

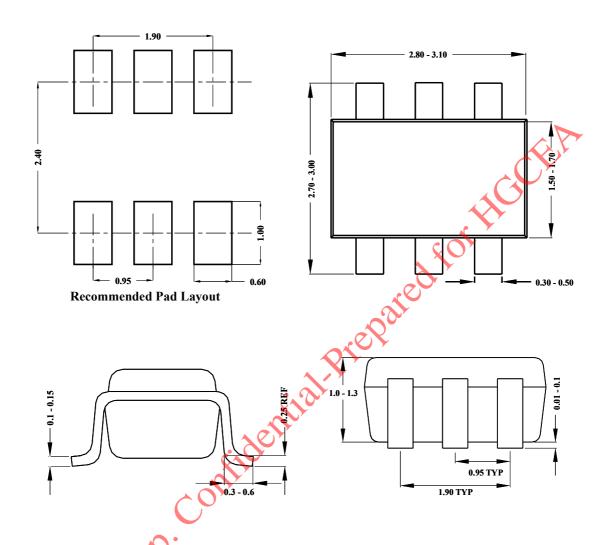
The resistor of the snubber is

$$R_{RCD} = \frac{\left[N_{PS} \times (V_{OUT} + V_{D_F}) + \Delta V_{S}\right]^{2}}{P_{RCD}}$$

$$= \frac{\left[7 \times (12V + 1V) + 75V\right]^{2}}{0.53W}$$

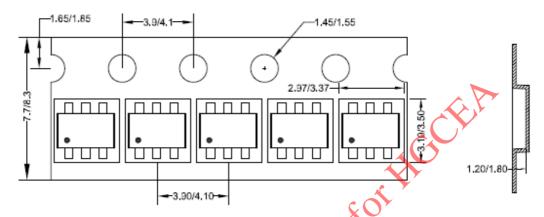

$$= 52k\Omega$$

The capacitor of the snubber is

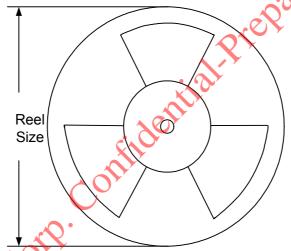

$$\begin{split} C_{\text{RCD}} &= \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D_F}}) + \Delta V_{\text{S}}}{R_{\text{RCD}} f_{\text{S,MIN}} \Delta V_{\text{C_RCD}}} \\ &= \frac{7 \times (12V + 1V) + 75V}{53k\Omega \times 60 \text{kHz} \times 25V} \\ &= 2.08 \text{nF} \end{split}$$

#10. Final Result

SOT23-6 Package Outline & PCB Layout Design


Notes: All dimensions are in millimeters.

All dimensions don't include mold flash & metal burr.


Taping & Reel Specification

1. Taping orientation for packages (SOT23-6)

Feeding direction ----

2. Carrier Tape & Reel specification for packages

Package type	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
SOT23-6	8	4	7"	280	160	3000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by Silergy manufacturer:

Other Similar products are found below:

FAN53610AUC33X FAN53611AUC123X EN6310QA 160215 R3 KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G

AST1S31PUR NCP81203PMNTXG NCP81208MNTXG PCA9412AUKZ NCP81109GMNTXG NCP3235MNTXG NCP81109JMNTXG

NCP81241MNTXG NTE7223 NTE7222 NTE7224 L6986FTR MPQ4481GU-AEC1-P MP8756GD-P MPQ2171GJ-P MPQ2171GJ-AEC1-P

NJW4153U2-A-TE2 MP2171GJ-P MP28160GC-Z MPM3509GQVE-AEC1-P XDPE132G5CG000XUMA1 LM60440AQRPKRQ1

MP5461GC-P NCV896530MWATXG MPQ4409GQBE-AEC1-P S-19903DA-A8T1U7 S-19903CA-A6T8U7 S-19903CA-S8T1U7 S
19902BA-A6T8U7 S-19902CA-A6T8U7 S-19902AA-A6T8U7 S-19903AA-A6T8U7 S-19902AA-S8T1U7 S-19902BA-A8T1U7 AU8310

LMR23615QDRRRQ1 LMR33630APAQRNXRQ1 LMR36503R5RPER LMR36503RFRPER LMR36503RS3QRPERQ1

LMR36506R5RPER