

Applications Note:SY5983 Single Stage Flyback and PFC Controller with Primary Side Control for LED Lighting and integrates 0~10V transformer driver

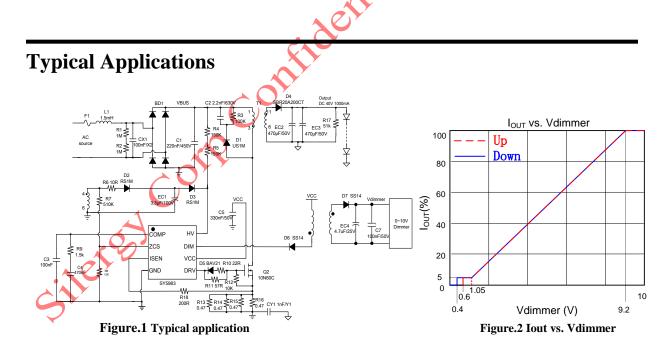
Preliminary Specification

General Description

The SY5983 is a single stage Flyback and PFC controller targeting at LED isolate dimming applications, which can achieve up to 5% dimming level and high precision for all loading range. It is a primary side controller without applying any secondary feedback circuit for low cost, and drives the converter in the quasi-resonant mode to achieve higher efficiency. It keeps the converter in constant on time operation to achieve high power factor. It integrates 0~10V transformer driver and simply the peripheral.

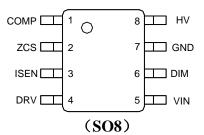
Ordering Information

SY5983 (CD) Temperature Code Package Code Optional Spec Code


Ordering Number	Package type	Note
SY5983FAC	SO8	

Features

- Primary Side Control Eliminates the Opto-coupler.
- Dimming Range from 5% to100%
- 0~10V Dimming is Driver by Transformer.
- Valley Turn-on of the Primary MOSFET to Achieve Low Switching Losses
- High Voltage Start-up Function , Start-up Time<300ms
- Low Standby Power<500mW
- Reliable Short LED and Open LED Protection
- Power Factor >0.90
- Internal High Current MOSFET Driver: 0.19A Sourcing and 0.6A Sinking
- Compact Package: SO8


Applications

LED Dimming

Pinout (top view)

Top Mark: CTN xyz (device code: CTN, x=year code, y=week code, z= lot number code)

Pin Name	Pin number	Pin Description
COMP	1	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.
ZCS	2	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resister divider and detects the inductor current zero crossing point. This pin also provides over voltage protection, line regulation modification function and CV detection simultaneously. If the voltage on this pin is above V _{ZCS,OVP} , the IC would enter over voltage protection mode. Good line regulation can be achieved by adjusting the upper resistor of the divider.
ISEN	3	Current sense pin. Connect this pin to the source of the primary switch. Connect the sense resistor across the source of the primary switch and the GND pin. (current sense resister Rs: $R_s = k \frac{V_{REF} \times N_{PS}}{I_{OUT}}$, k=0.167)
DRV	4	Gate driver pin. Connect this pin to the gate of primary MOSFET.
VIN	5	Power supply pin. 330nF ceramic cap is recommend between this pin to GND
DIM	6	Connect this pin to primary side of Dim transformer to achieve dimming signal.
GND	7	Ground pin
HV	8	High voltage Start-up pin.

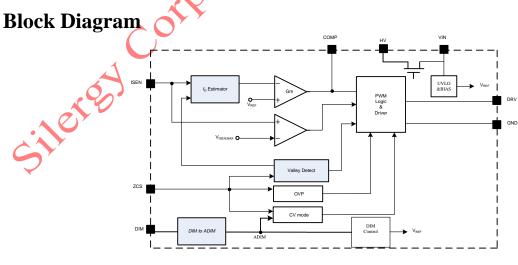


Figure.3 Block Diagram

Absolute Maximum Ratings (Note 1)

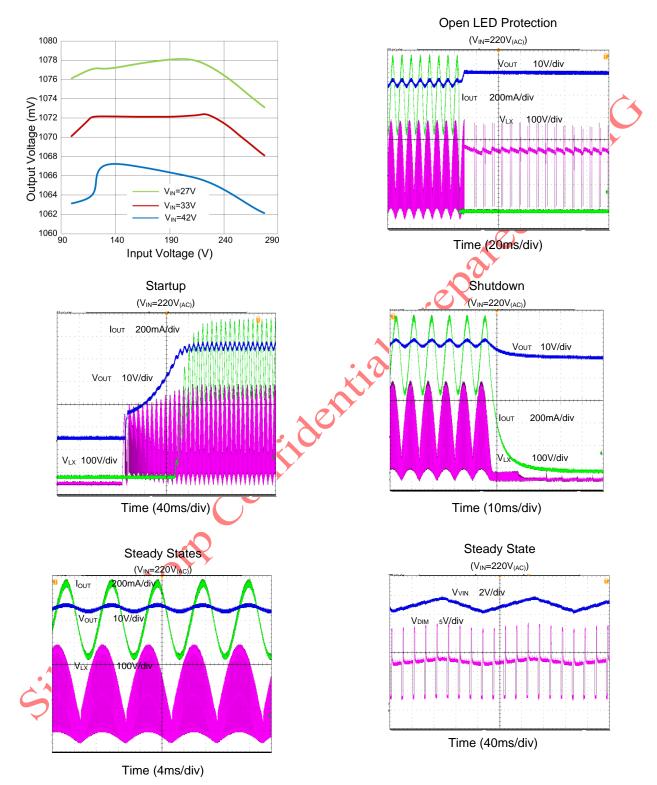
VIN, DRV	
Supply current I _{VIN}	7mA
ZCS	
DIM	
ISEN, COMP	
HV	700V
Power Dissipation, @ T _A = 25°C SO8	1.1W
Package Thermal Resistance (Note 2)	
SO8, θ JA	88°C/W
SO8, θ JC	45°C/W
Junction Temperature Range	40°C to 150°C
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	
0 <u>-</u> 0-	

Silered Confidential Prese Recommended Operating Conditions (Note 3)

-40°C to 125°C

Electrical Characteristics

 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25^{\circ}C \text{ unless otherwise specified)}$


$V_{\rm IN} = 12V$ (Note 3), $I_{\rm A} = 25$ °C unless	Juici wise spe	cilieu)				
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section						
Input Voltage Range	V _{VIN}		7.5		17.4	V
VIN Turn-on Threshold	V _{VIN_ON}			11.8		V
VIN Turn-off Threshold	V_{VIN_OFF}			7.5		V
VIN OVP Voltage	V _{VIN_OVP}			17.4		V
Start-up Current	I _{ST}	$V_{VIN} < V_{VIN_OFF}$		170	Ń	μA
Discharge Current in OVP Mode	I _{VIN_OVP}	V _{VIN} =12V (Note 4)		7	D'	mA
Error Amplifier Section				\sim		
Internal Reference Voltage	V _{REF}			280		mV
Current Sense Section			9			
Current Limit Reference Voltage	V _{ISEN_MAX}			0.45		V
ZCS Pin Section			.OY			
ZCS Pin OVP Voltage Threshold	V _{ZCS_OVP}			1.5		V
Gate Driver Section						
Gate Driver Voltage	V _{Gate}	X		11		V
Maximum Source Current	I _{SOURCE}			0.19		А
Minimum Sink Current	I _{SINK}	λ^{o}		0.6		А
Max ON Time	T _{ON_MAX}	V _{COMP} =2.7V		22		μs
Min ON Time	TON_MIN			450		ns
Max OFF Time	TOFF_MAX			50		μs
Min OFF Time	T _{OFF_MIN}			1.5		μs
Maximum Switching Frequency	F _{MAX}			120		kHz
DIM function Section						
Peak Current	I_pk			23		mA
HV Function Section						
BV	V_BV		700			V
Thermal Section						
Thermal Shut down Temperature	T _{SD}			150		°C

Note 1; Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}$ C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. **Note 3**: Increase VIN pin voltage gradually higher than V_{VIN_ON} voltage then turn down to 12V. **Note 4**: Increase VIN pin voltage gradually higher than V_{VIN_OVP} voltage then turn down to 12V

Typical Performance Characteristic

Operation

The SY5983 is a single stage Flyback and PFC controller targeting at LED lighting applications with isolate dimming function.

SY5983 provides primary side control to eliminate the opto-couplers and the secondary feedback circuits, which can decrease the BOM cost of the system design.

High power factor is achieved by constant on time operation mode, with which both the control scheme and the circuit structure are simple.

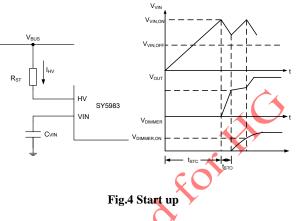
In order to reduce the switching loss and improve EMI performance, Quasi-Resonant switching mode is applied. The maximum switching frequency is limited at 120KHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.

In order to meet isolate dimming applications, $0\sim10V$ transformer driver is integrated, the dimming circuit is simple.

SY5983 provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.

SY5983 is available with SO8 package.

Applications Information


<u>HV start up</u>

After AC supply or DC BUS is powered on, the capacitor C_{VIN} between VIN and GND pin is charged up by BUS voltage through a start-up resistor R_{ST} and HV inner MOS. Once V_{VIN} rises up to V_{VIN_ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of transformer could supply enough energy to HV to maintain V_{VIN} above V_{VIN_OFF} .

The whole start up procedure is divided into four sections shown in Fig.4. t_{STC} is the C_{VIN} charged up section, and t_{STO} is the output voltage build-up section. The start-up time t_{ST} is composed of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

 t_{STO} is fast start-up stage, which will help to create output voltage quickly. After t_{STO} , if V_{DIMMER} is less than V_{DIMMER_ON} , IC enters into CV mode. When V_{DIMMER} is

larger than V_{DIMMER_ON} , IC works in constant on time mode.

The start up resistor R_{ST} and C_{VIN} are designed by rules as below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than 0.35mA and smaller than 1mA.

$$\frac{\mathbf{V}_{\text{BUS}}}{1\text{mA}} < \mathbf{R}_{\text{ST}} < \frac{\mathbf{V}_{\text{BUS}}}{0.35\text{mA}}$$
(1)

Where V_{BUS} is the BUS line voltage

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{VIN} = \frac{\left(\frac{V_{BUS}}{R_{ST}} - I_{ST}\right) \times t_{ST}}{V_{VIN_{ON}}}$$
(2)

Usually, 330nF-470nF/50V ceramic cap is recommend (d) If the C_{VIN} is not big enough to build up the output voltage at one time, decrease R_{ST}, go back to step (a) and redo such design flow until the ideal start up procedure is obtained.

HV supply logic

In initial state, $V_{VIN} = 0$, after AC supply or DC BUS is powered on, inner MOS of HV works, C_{VIN} is charged by I_{HV} , when V_{VIN} rise to V_{VIN_ON} , inner MOS of HV turn off. When V_{VIN} is discharged to V_{VIN_ON} -1.5V, inner MOS of HV will works against, and also turn off when V_{VIN} rise to V_{VIN_ON} .

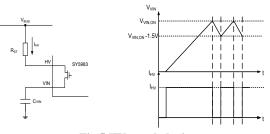
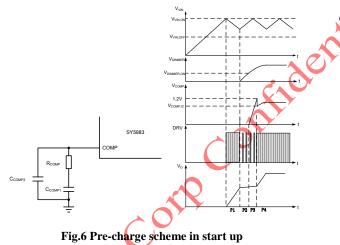


Fig.5 HV supply logic


Internal pre-charge design for quick start up

See as Fig.6, In P3, V_{COMP} is pre-charged by internal current source until it is over the initial voltage V_{COMP_IC} . V_{COMP_IC} can be programmed by R_{COMP} . Such design is meant to reduce the start-up time.

The voltage pre-charged $V_{\text{COMP_IC}}$ in start-up procedure can be programmed by $R_{\text{COMP:}}$

$$V_{\text{COMP_IC}} = 1.2 \text{V} - 300 \mu \text{A} \times \text{R}_{\text{COMP}}$$
(3)

Where $V_{\text{COMP}_{IC}}$ is the pre-charged voltage of COMP pin.

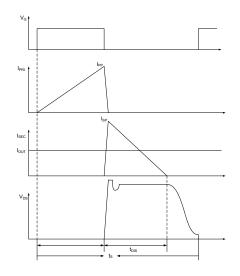
Generally, a big capacitance of C_{COMP1} is necessary to achieve high power factor and stabilize the system loop (470nF~1µF is recommended).

The voltage pre-charged in start-up procedure can be programmed by R_{COMP} ; On the other hand, larger R_{COMP} can provide larger phase margin for the control loop; A small ceramic capacitor is added to suppress high frequency interruption (100nF is recommended in C_{COMP2})

<u>Shut down</u>

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of the transformer cannot supply enough Voltage to HV pin, V_{VIN} will drop down. Once V_{VIN} is below V_{VIN_OFF} , the IC will stop working and V_{COMP} will be discharged to zero.

Primary side constant current control


Primary side control is applied to eliminate secondary feedback circuit and opto-coupler, which reduces the BOM cost. The switching waveforms are shown in Fig.7.

The output current I_{OUT} can be represented by,

$$I_{OUT} = \frac{I_{SP}}{2} \times \frac{t_{DIS}}{t_{S}}$$
(4)

Where I_{SP} is the peak current of the secondary side; t_{DIS} is the discharge time of the transformer; t_S is the switching period.

The secondary peak current is related with primary peak current, if the effect of the leakage inductor is neglected.

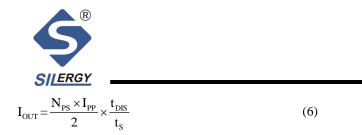
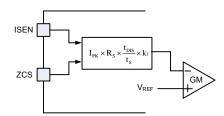


Fig.7 switching waveforms

$$\mathbf{I}_{\mathrm{SP}} = \mathbf{N}_{\mathrm{PS}} \times \mathbf{I}_{\mathrm{PP}} \tag{5}$$


Where N_{PS} is the turn ratio of primary to secondary of the transformer.

Thus, IOUT can be represented by

The primary peak current I_{PP} and inductor current discharge time t_{DIS} can be detected by ISEN and ZCS pin, which is shown in Fig.8. These signals are processed and applied to the negative input of the gain modulator. In static state, the positive and negative inputs are equal.

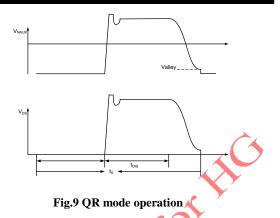
$$\mathbf{V}_{\text{REF}} = \mathbf{I}_{\text{PP}} \times \mathbf{R}_{\text{S}} \times \frac{\mathbf{t}_{\text{DIS}}}{\mathbf{t}_{\text{S}}} \times \mathbf{k}_{1}$$
(7)

Fig.8 Output current detection diagram

Finally, the output current I_{OUT} can be represented by

$$I_{OUT} = \frac{V_{REF} \times N_{PS}}{R_{S} \times 2 \times k_{1}}$$
(8)

Where k_1 is the output current weight coefficient; V_{REF} is the internal reference voltage; R_S is the current sense resistor.


 k_1 and V_{REF} are all internal constant parameters, I_{OUT} can be programmed by N_{PS} and R_S .

$$Rs = \frac{V_{REF} \times N_{PS}}{I_{OUT} \times 2 \times k_1}$$
(9)

Then

$$R_{s} = \frac{k \times V_{REF} \times N_{PS}}{I_{OUT}} k = \frac{1}{2k_{1}}$$
(10)

QR mode operation provides low turn-on switching losses for the converter.

AN SY5983

The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary MOSFET is at voltage valley, the MOSFET would be turned on.

When V_{DIMMER} < V_{DIMMER_OFF}, IC still need bias power:

(1) If V_{DIMMER} voltage is greater than V_{DIMMER_ON}, IC always works at CC mode.

(2) If V_{DIMMER} voltage is lower than V_{DIMMER_OFF} , CV mode is triggered. IC works in CV mode to maintain V_{ZCS} nearby V_{ZCS_CV} (0.5V). N_P: N_{AUX} and R_{ZCS} can be adjusted to prevent LED flicker and keep bias supply enough at CV mode.

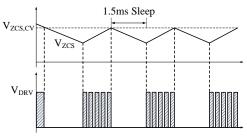


Figure.10 The working process of CV mode

In CV mode, which is shown in Fig.10.

(1) If V_{ZCS} is greater than V_{ZCS_CV} (0.5V), IC will sleep for 1.5ms.

(2) After 1.5mS sleep, if V_{ZCS} is smaller than $V_{ZCS_{CV}}$ IC will work until V_{ZCS} is greater than $V_{ZCS_{CV}}$. During this time, MOSFET turns on by QR and turns off until the ISEN voltage V_{RS} reach 50mV.

The output of CV can be calculated as below:

$$V_{OUT,CV} = 0.5V \times \left(\frac{R_{ZCSU} + R_{ZCSD}}{R_{ZCSD}}\right) \times \frac{N_s}{N_{AUX}}$$
(11)

Where, R_{ZCSU} is the upper resistor of ZCS pin; R_{ZCSD} is the down resistor of ZCS pin; N_S and N_{AUX} are the turns of secondary winding and auxiliary winding separately.

Dimming function

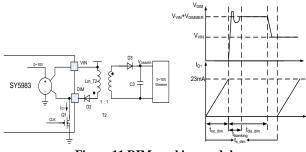


Figure.11 DIM working module

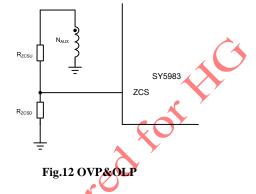
The dimming circuit is a Flyback converter. The inductor Lm_T2 store energy when Q1 turns on. Q1 works in constant peak current 23mA mode. After Q1 turning off, inductor release energy for 0~10V dimmer power supply. Simultaneously, the voltage between DIM pin and VCC pin is reflected the voltage of dimmer. (Set the turn ratio of primary to secondary of the dimming transformer is 1). It is shown in Fig.11.

$$V_{DIM} - V_{VIN} = V_{DIMMER} + (V_{D3} - V_{D2})$$

In order to eliminate error between D2 and D3, the same type diode is needed in this circuit, SS14 is recommended.

In order to avoid sampling mistake, a blanking time tblanking is used to eliminate oscillation voltage of VDIM when Q1 turn off. So the tdis_dim need to higher than tblanking. So the inductance:

$$L_{m_{T2}} > \frac{V_{DIMMER, \max} \times t_{blanking}}{23mA}$$
(13)


Where tolanking is 1.5us.

If magnetic ring is used in this application, due to the uivary fast during low to high temperature. Normally, the inductance of magnetic ring is only half when transformer works in high temperature or low temperature (lower than -30° C). So the magnetic ring inductance will be set as:

$$L_{m_{T2}} > \frac{2 \times V_{DIMMER,max} \times t_{blanking}}{23mA}$$
(14)

Also, need to consider the \pm 30% error of the μ_{i} .

Over Voltage Protection (OVP) & Open LED Protection (OLP)

The output voltage is reflected by the auxiliary winding voltage of the Flyback transformer, and ZCS pin provides over voltage protection function. When the load is null or large transient happens, the output voltage will exceed the rated value. When V_{ZCS} exceeds V_{ZCS_OVP} , the over voltage protection is triggered and the IC will discharge V_{VIN} by an internal current source. Once V_{VIN} is below V_{VIN_OFF} , the IC will shut down and be charged again by HV voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the turns of the auxiliary winding $N_{\rm AUX}$ and the resistor divider is related with the OVP function.

$$\frac{V_{\text{ZCS}_\text{OVP}}}{V_{\text{OVP}}} = \frac{N_{\text{AUX}}}{N_{\text{S}}} \times \frac{R_{\text{ZCSD}}}{R_{\text{ZCSU}} + R_{\text{ZCSD}}}$$
(15)

$$\frac{V_{VIN_{OVP}}}{V_{OVP}} \ge \frac{N_{AUX}}{N_{S}}$$
(16)

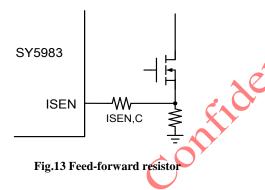
Where V_{OVP} is the output over voltage specification; R_{ZCSU} and R_{ZCSD} compose the resistor divider. The turn ratio of N_S to N_{AUX} and the ratio of R_{ZCSU} to R_{ZCSD} could be induced from equation (15) and (16).

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so valley signal cannot be detected by V_{ZCS} . Without valley detection, MOSFET cannot be turned ON until maximum off time t_{OFF_MAX} is matched. If MOSFET is turned ON by t_{OFF_MAX} 64 times continuously, IC will be shut down

AN_SY5983 Rev.0.1A Silergy Corp. Confidential-Prepared for Customer Use Only 9 © 2020 Silergy Corp. All Rights Reserved.

and enter into hiccup mode.


Line regulation modification

The IC provides line regulation improvement function by adjusting the external resistor.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with the increasing of input BUS line voltage. A small compensation voltage ΔV_{ISEN_C} is added to ISEN pin during ON time to improve such performance. This ΔV_{ISEN_C} is adjusted by the upper resistor of the divider connected to ZCS pin and external resistor RISEN, c on ISEN pin.

$$\Delta \mathbf{V}_{\text{ISEN,C}} = \mathbf{V}_{\text{BUS}} \times \frac{\mathbf{N}_{\text{AUX}}}{\mathbf{N}_{\text{P}}} \times \frac{1}{\mathbf{R}_{\text{ZCSU}}} \times \mathbf{k}_{2} \times (\mathbf{R}_{k2} + \mathbf{R}_{\text{ISEN,C}})$$
(17)

Where R_{VSENU} is the upper resistor of the divider; k_2 is an internal constant as the modification coefficient; R_{k2} is an internal feed-forward resistor; auxiliary resistor $R_{ISEN,C}$ can be added to enhance feed-forward effects.

The compensation is mainly related with R_{ZCSU} , larger compensation is achieved with smaller R_{ZCSU} . Normally, R_{ZCS} ranges from $100k\Omega \sim 1M\Omega$.

Then R_{ZCSD} can be selected by,

$$V_{AUX_{CV}} = \frac{0.5 \cdot (R_{ZCSU} + R_{ZCSD})}{R_{ZCSD}} \ge 20$$
(18)

12K is recommended to use in R_{ZCSD} .

 R_{ZCSU} is the upper resistor of the divider; N_S and N_{AUX} are the turns of secondary winding and auxiliary winding separately.

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$V_{\text{MOS}_DS_MAX} = \sqrt{2} V_{\text{AC}_MAX} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_F}) + \Delta V_{\text{S}}$$
(20)
$$V_{\text{D}_R_MAX} = \frac{\sqrt{2} V_{\text{AC}_MAX}}{N_{\text{PS}}} + V_{\text{OUT}}$$
(21)

Where V_{AC_MAX} is the maximum input AC RMS voltage; N_{PS} is the turn ratio of the Flyback transformer; V_{OUT} is the rated output voltage; V_{D} r is the forward voltage of secondary power diode; ΔV_{S} is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$MOS_{PK,MAX} = I_{P_{PK,MAX}}$$
(22)

$$MOS_{RMS_{MAX}} = I_{P_{RMS_{MAX}}}$$
(23)

$$I_{D_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX}$$
(24)

$$I_{D_{AVG}} = I_{OUT}$$
(25)

Where $I_{P_PK_MAX}$ and $I_{P_RMS_MAX}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer (NPS and LM)

 N_{PS} is limited by the electrical stress of the power MOSFET:

$$N_{PS} \leq \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D_F}}$$
(26)

Where $V_{\text{MOS}_(\text{BR})\text{DS}}$ is the breakdown voltage of the power MOSFET.

In Quasi-Resonant mode, each switching period cycle t_S consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 are shown as Fig.14.

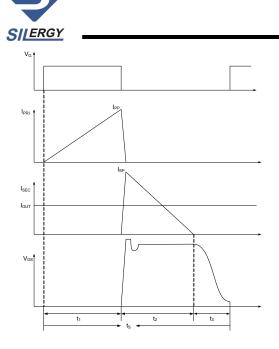


Fig.14 switching waveforms

The system operates in the constant on time mode to achieve high power factor. The ON time increases with the decreasing of input AC RMS voltage and the increasing of load. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized. Thus, the minimum switching frequency $f_{S_{MIN}}$ happens at the peak value of input voltage with minimum input AC RMS voltage and maximum load condition; meanwhile, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency $f_{S_{MIN}}$ is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS}

$$N_{PS} \leq \frac{V_{MOS_{(BR)DS}} \times 90\% - \sqrt{2}V_{AC_{MAX}} - \Delta V_{S}}{V_{oUT} + V_{D_{L}F}}$$
(27)

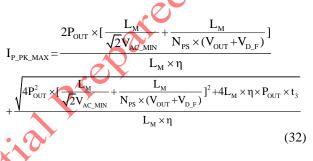
(b) Preset minimum frequency f_{S_MIN}

(c) Compute relative t_s , t_1 (t_3 is omitted to simplify the design here)

$$t_s = \frac{1}{f_{s_MIN}}$$
(28)

$$t_{1} = \frac{t_{S} \times N_{PS} \times (V_{OUT} + V_{D,F})}{\sqrt{2} V_{AC_MIN} + N_{PS} \times (V_{OUT} + V_{D,F})}$$
(29)

(d) Design inductance L_M


$$L_{\rm M} = \frac{V_{\rm AC_MIN}^2 \times t_1^2 \times \eta}{2P_{\rm OUT} \times t_{\rm S}}$$
(30)

(e) Compute t₃

$$t_3 = \pi \times \sqrt{L_M \times C_{\text{Drain}}}$$
(31)

Where C_{Drain} is the parasitic capacitance at drain of MOSFET.

(f) Compute primary maximum peak current $I_{P_PK_MAX}$ and RMS current $I_{P_RMS_MAX}$ for the transformer fabrication.

Where η is the efficiency; P_{OUT} is rated full load power

Adjust t_1 and t_s to t_1' and t_s' considering the effect of t_3

$$t'_{S} = \frac{\eta \times L_{M} \times I^{2}_{P_PK_MAX}}{4P_{OUT}}$$
(33)

$$t_{1}^{\prime} = \frac{L_{M} \times I_{P_{P}PK_{MAX}}}{\sqrt{2}V_{AC_{MIN}}}$$
(34)

$$I_{P_{RMS}MAX} \approx \sqrt{\frac{t_1'}{6t_s'}} \times I_{P_{PK}MAX}$$
(35)

(g) Compute secondary maximum peak current $I_{S_PK_MAX}$ and RMS current $I_{S_RMS_MAX}$ for the transformer fabrication.

$$I_{S_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX}$$
(36)

$$t_2 = t_s - t_1 - t_3$$
 (37)

$$I_{S_{RMS}MAX} \approx \sqrt{\frac{t'_{2}}{6t'_{S}}} \times I_{S_{PK}MAX}$$
(38)

AN_SY5983 Rev.0.1A © 2020 Silergy Corp.

Transformer design (N_P,N_S,N_{AUX})

The design of the transformer is similar with ordinary Flyback transformer. The parameters below are necessary:

Necessary parameters	
Turns ratio	N _{PS}
Inductance	L _M
Primary maximum current	IP_PK_MAX
Primary maximum RMS current	I _{P_RMS_MAX}
Secondary maximum RMS current	Is_rms_max

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area $A_{e_{\cdot}}$

(b) Preset the maximum magnetic flux ΔB

 $\Delta B=0.22\sim0.26T$

(c) Compute primary turn N_P

$$N_{\rm P} = \frac{L_{\rm M} \times I_{\rm P_PK_MAX}}{\Delta B \times A_{\rm e}}$$
(39)

(d) Compute secondary turn N_S

$$N_s = \frac{N_P}{N_{PS}}$$

(e) Compute auxiliary turn N_{AUX} , For VCC is supplied by HV, and HV is supplied by $V_{AUX,MN}$ in order to ensure the VCC works normally during CV mode. N_{AUX} can set:

$$N_{AUX} = N_{S} \times \frac{3 \times V_{AUX,CV}}{V_{OVP}}$$
(41)

Where V_{OVP} is the output over voltage protection point, and $V_{AUX,CV}$ is 20V.

(f) Select an appropriate wire diameter

With $I_{P:RMS-MAX}$ and $I_{S:RMS-MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$.

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

AN_SY5983 Rev.0.1A © 2020 Silergy Corp. Preset the output current ripple ΔI_{OUT} , C_{OUT} is induced by

$$C_{OUT} = \frac{\sqrt{\left(\frac{2I_{OUT}}{\Delta I_{OUT}}\right)^2 - 1}}{4\pi f_{AC} R_{LED}}$$
(42)

Where I_{OUT} is the rated output current; ΔI_{OUT} is the demanded current ripple; f_{AC} is the input AC supply frequency; R_{LED} is the equivalent series resistor of the LED load.

RCD snubber for MOSFET

The power loss of the snubber P_{RCD} is evaluated first

$$P_{\rm RCD} = \frac{N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_{\rm F}}) + \Delta V_{\rm S}}{\Delta V_{\rm S}} \times \frac{L_{\rm K}}{L_{\rm M}} \times P_{\rm OUT}$$
(43)

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; V_{D_F} is the forward voltage of the power diode; ΔV_S is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; P_{OUT} is the output power.

The R_{RCD} is related with the power loss:

$$R_{\rm RCD} = \frac{\left(N_{\rm PS} \times \left(V_{\rm OUT} + V_{\rm D_{\rm F}}\right) + \Delta V_{\rm S}\right)^2}{P_{\rm RCD}}$$
(44)

The C_{RCD} is related with the voltage ripple of the snubber ΔV_{C_RCD} :

$$C_{\rm RCD} = \frac{N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_F}) + \Delta V_{\rm S}}{R_{\rm RCD} f_{\rm S} \Delta V_{\rm C_RCD}}$$
(45)

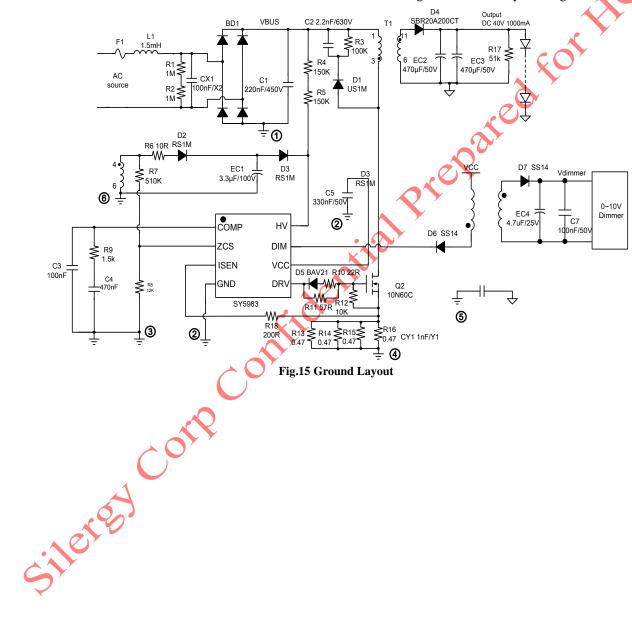
Layout

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.

(b) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.

(c) Bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.

(d) Loop of 'Source pin – current sample resistor – GND pin' .should be kept as small as possible.


(e) The resistor divider is recommended to be put beside the IC.

- (f) The connection of ground is recommended as: $3 \leftrightarrow 2 \leftrightarrow 4 \leftrightarrow 1 \leftrightarrow 5$
- Ground ①: ground of BUS line capacitor

Ground (2): ground of bias supply capacitor and GND pin

- Ground ③: ground of signal trace except GND pin
- Ground ④: ground of current sample resistor.
- Ground (5): primary ground node of Y capacitor.

Ground ^(©): ground of auxiliary winding

Design Example

A design example of typical application is shown below step by step.

#1. Identify design specification

Design Specificat	tion			
V _{AC} (RMS)	90V~264V	V _{OUT}	42V	
I _{OUT}	1000mA	η	89%	
#2. Transformer de	esign (N _{PS} , L _M)			

Refer to Power Device Design

Conditions			
V _{AC_MIN}	90V	V _{AC_MAX}	264V
${}^{\vartriangle}V_S$	50V	V _{MOS_(BR)DS}	600V
Pout	42W	V _{D,F}	11
C _{Drain}	100pF	f _{S_MIN}	75kHz
$=\frac{600V \times 0.9 - \sqrt{1000}}{1000}$	$\frac{90\% - \sqrt{2} V_{AC_MAX} - \Delta V_S}{V_{OUT} + V_{D,F}}$	Allentia	
=2.71		510t	
N _{PS} is set to		NY I	
N _{PS} =2.60	Ċ	01	
(b)f _{S_MIN} is preset			
f _{s,min} =42kHz	~ Of Y		

$$\begin{split} N_{PS} &\leq \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2} V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D,F}} \\ &= \frac{600V \times 0.9 - \sqrt{2} \times 264V - 50V}{42V + 1V} \\ &= 2.71 \end{split}$$

$$N_{PS} = 2.60$$

(c) Compute the switching period t_s and ON time t_1 at the peak of input voltage.

$$t_{s} = \frac{1}{f_{s_MIN}} = 23.8 \mu s$$

$$t_{1} = \sqrt{2V_{AC_MIN} + N_{PS} \times (V_{OUT} + V_{D_F})}$$

$$= \frac{23.8 \mu s \times 2.60 \times (42V + 1V)}{\sqrt{2} \times 90V + 2.60 \times (42V + 1V)}$$

$$= 11.13 \mu s$$

(d) Compute the inductance L_M

$$k_{s} = \frac{V_{a_{s}, \text{triv}}^{2} \times 1.13 \text{ triv}}{2 \text{ triv} \times 1.3 \text{ triv}} = \frac{90^{2} \times 1.13 \text{ triv}^{2} \times 0.89}{2 \times 420 \times 23.8 \text{ triv}} = \frac{90^{2} \times 1.13 \text{ triv}^{2} \times 0.89}{2 \times 420 \times 23.8 \text{ triv}} = \frac{90^{2} \times 1.13 \text{ triv}^{2} \times 0.89}{2 \times 420 \times 23.8 \text{ triv}} = \frac{160^{2} \times 1.13 \text{ triv}^{2} \times 0.89}{2 \times 420 \times 23.8 \text{ triv}} = \frac{27 \text{ triv}^{2} \sqrt{40 \text{ triv}^{2} + 100 \text{ triv}^{2}} + \frac{160 \text{ triv}^{2} + 100 \text{ triv}^{2}}{1 \text{ triv}^{2} + 100 \text{ triv}^{2}} = \frac{27 \text{ triv}^{2} \sqrt{40 \text{ triv}^{2} + 100 \text{ triv}^{2}} + \frac{160 \text{ triv}^{2} + 100 \text{ triv}^$$

Compute primary maximum RMS current IP_RMS_MAX

$$\mathbf{I}_{P_{P,RMS,MAX}} \approx \sqrt{\frac{t_1'}{6t_S'}} \times \mathbf{I}_{P_{P,R},MAX} = \sqrt{\frac{11.27\mu s}{6 \times 24.772\mu s}} \times 3.26A = 0.90A$$

(g) Compute secondary maximum peak current and the maximum RMS current.

$$I_{S PK MAX} = N_{PS} \times I_{P PK MAX} = 2.60 \times 3.26A = 8.47A$$

 $t_2 = t_s - t_1 - t_3 = 24.772 \mu s - 11.27 \mu s - 0.659 \mu s = 12.843 \mu s$

$$I_{S,RMS,MAX} \approx \sqrt{\frac{t_2'}{6t_S'}} \times I_{S_PK_MAX} = \sqrt{\frac{12.843 \mu s}{6 \times 24.772 \mu s}} \times 8.47 A = 2.55 A$$

#3. Select power MOSFET and secondary power diode

Refer to Power Device Design

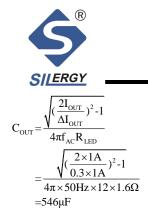
Known condition	ns at this step			
V_{AC_MAX}	264V	N _{PS}	2.60	
V _{OUT}	42V	V _{D_F}	1V	
ΔV_{S}	50V	η	89%	
$V_{\text{MOS}_{\text{DS}_{\text{MAX}}}} = \sqrt{2}V_{A}$	voltage and the current st $_{AC_{MAX}} + N_{PS} \times (V_{OUT} + V_{D_{-}F})$ $264V + 2.60 \times (42V + 1V) + 5$	$+\Delta V_s$	are	
I _{MOS_PK_MAX} =I _{P_PK_}	_{MAX} =3.26A		over	
$I_{MOS_RMS_MAX} = I_{P_R}$	_{MS_MAX} =0.90A			
(b) Compute the v	voltage and the current s	tress of secondary powerd	liode	

$$V_{\text{MOS}_\text{DS}_\text{MAX}} = \sqrt{2} V_{\text{AC}_\text{MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_F}) + \Delta V_{\text{S}}$$
$$= \sqrt{2} \times 264 \text{V} + 2.60 \times (42 \text{V} + 1 \text{V}) + 50 \text{V}$$
$$= 535 \text{V}$$

(b) Compute the voltage and the current stress of secondary power diode , po,

$$V_{D_{D_{R}}MAX} = \frac{\sqrt{2}V_{AC_{MAX}}}{N_{PS}} + V_{OUT}$$
$$= \frac{\sqrt{2} \times 264V}{2.60} + 42V$$
$$= 186V$$

 $I_{D_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX} = 2.60 \times 3.26A = 8.47A$


 $I_{D_AVG} = I_{OUT} = 1A$

#4. Select the output capacitor Court

Refer to Power Device Design

Conditions			
Iout	1000mA	ΔI_{OUT}	0.3I _{OUT}
f _{AC}	50Hz	R _{LED}	$12 \times 1.6\Omega$

The output capacitor is

AN_SY5983

#5. Set VIN pin

Refer to Start up

Conditions			
V _{BUS_MIN}	90V × 1.414	V _{BUS_MAX}	264V×1.414
I _{ST}	34µA (typical)	V _{IN_ON}	22V (typical)
		t _{ST}	300ms (designed by user)
(a) R _{ST} is preset $R_{ST} < \frac{V_{BUS}}{350 \mu A} = \frac{90^{\circ}}{350 \mu A}$	$\frac{V \times 1.414}{350 \mu A} = 363 k\Omega$,		erepare
$R_{\rm ST} > \frac{V_{\rm BUS}}{1mA} = \frac{90V \times 10^{-1}}{1m}$	$\frac{1.414}{nA} = 127k\Omega,$	filentio	Sr.
Set R _{ST}		ation of the second sec	
$R_{st} = 150 k\Omega \times 2 = 3$	300kΩ	, yer	
(b) Design C _{VIN}		SI	
Set C _{VIN}	~ 0		
C _{VIN} =330nF			
#6 Set COMP pin			

$$\begin{split} R_{\rm ST} &< \frac{V_{\rm BUS}}{350 \mu A} = \frac{90V \times 1.414}{350 \mu A} = 363 \rm{k}\Omega \,, \\ R_{\rm ST} &> \frac{V_{\rm BUS}}{1mA} = \frac{90V \times 1.414}{1mA} = 127 \rm{k}\Omega \,, \end{split}$$

Refer to Internal pre-charge design for quick start up

Parameters designed				
R _{COMP}	1.5kΩ			
C _{COMP1}	470nF			
C _{COMP2}	100nF			

#7 Set current sense resistor to achieve ideal output current

Refer to Primary-side constant-current control

Known conditions at this step				
k 0.167 N _{PS} 2.60				
V _{REF} 0.28V I _{OUT} 1A				

C

The current sense resistor is

$$R_{s} = \frac{k \times V_{REF} \times N_{PS}}{I_{OUT}}$$
$$= \frac{0.167 \times 0.28V \times 2.60}{1A}$$
$$= 0.12\Omega$$

#8 set ZCS pin

Refer to Line regulation modification and Over Voltage Protection (OVP) & Open Loop Protection (OLP)

First identify R_{ZCSU} need for line regulation.

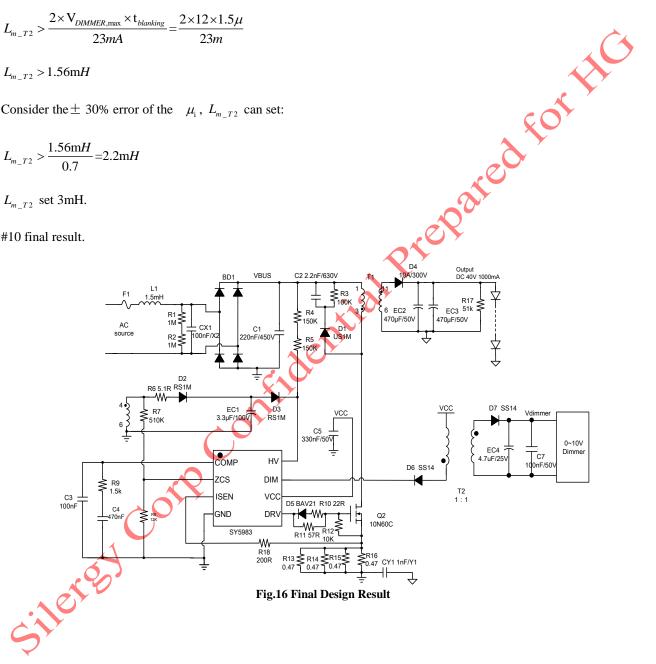
	-					
Parameters Designed						
R _{ZCSU}	510kΩ					
Then compute R _{ZCSU} and	i N _{AUX}		are			
Conditions	1					
V _{ZCS_OVP}	1.5V	VOVP	48V			
V _{OUT}	42V		*			
Parameters designed						
R _{ZCSU}	510kΩ					
Ns	12	N _{AUX}				
$V_{AUX_{CV}} = \frac{0.5 \cdot (R_{ZCSU} + R_{ZCSU})}{R_{ZCSU}}$ $\frac{0.5}{21.5} \ge \frac{R_{ZCSD}}{R_{ZCSU}}$ $R_{ZCSUP} = 510 \text{ k}\Omega$ $R_{ZCSD} \le 11.8$	$\frac{+R_{ZCSD}}{2} \ge 22$	hee				
R _{ZCSD} is set to						
$R_{zCSD} = 12k\Omega$						
Then set the N _{AUX} to $N_{AUX} = N_{AUX,CV}$						
$N_{AUX} = N_{S} \times \frac{V AUX, CV}{V_{OVP}}$ $N_{AUX} = 16.5$ $N_{AUX} \text{ is set to } 17$						

#9 Set dimming Transformer inductance

Refer to **Dimming function**

Known conditions at this step				
V _{DIMMER,MAX}	12V	N _{PS_T2}	1	

Magnetic ring is used in this application. Then $L_{m,T2}$ is set to

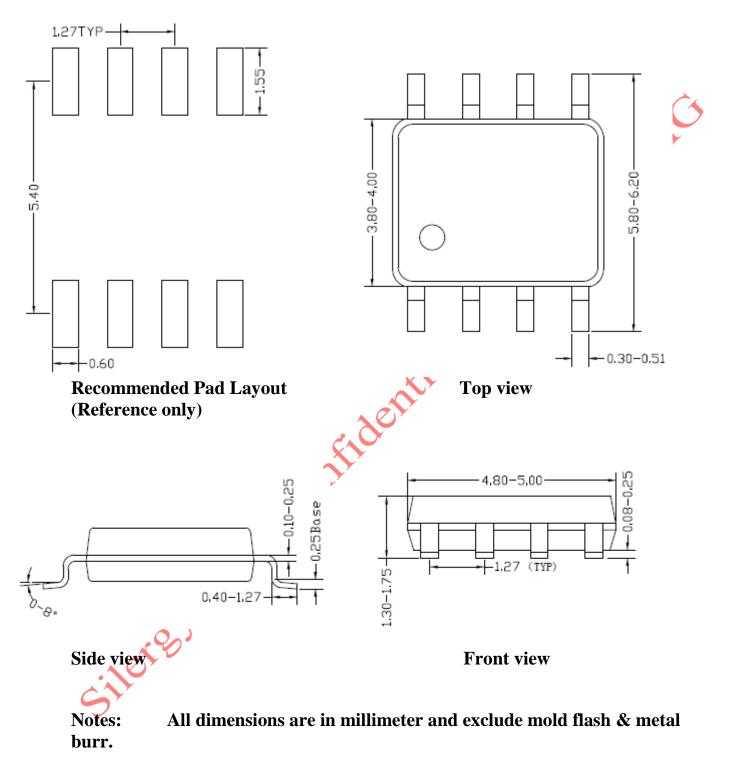

$$L_{m_{T2}} > \frac{2 \times V_{DIMMER, \max} \times t_{blanking}}{23mA} = \frac{2 \times 12 \times 1.5 \mu}{23m}$$

 $L_{m_T2} > 1.56 \text{mH}$

Consider the \pm 30% error of the μ_i , L_{m_T2} can set:

$$L_{m_{-}T2} > \frac{1.56 \text{m}H}{0.7} = 2.2 \text{m}H$$

#10 final result.



20

All Rights Reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by Silergy manufacturer:

Other Similar products are found below :

FAN53610AUC33XFAN53611AUC123XEN6310QA160215R3KE177614FAN53611AUC12XMAX809TTRNCV891234MW50R2GAST1S31PURNCP81203PMNTXGNCP81208MNTXGPCA9412AUKZNCP81109GMNTXGNCP3235MNTXGNCP81109JMNTXGNCP81241MNTXGNTE7223NTE7222NTE7224L6986FTRMPQ4481GU-AEC1-PMP8756GD-PMPQ2171GJ-PMPQ2171GJ-AEC1-PNJW4153U2-A-TE2MP2171GJ-PMP28160GC-ZMPM3509GQVE-AEC1-PXDPE132G5CG000XUMA1LM60440AQRPKRQ1MP5461GC-PIW673-20MPQ4409GQBE-AEC1-PS-19903DA-A8T1U7S-19903CA-A6T8U7S-19902BA-A6T8U7S-19902CA-A6T8U7S-19902AA-A6T8U7S-19903AA-A6T8U7S-19902AA-S8T1U7AU8310LMR23615QDRRRQ1LMR33630APAQRNXRQ1LMR33630APCQRNXRQ1LMR36503R5RPERLMR36503RFRPERLMR36503RS3QRPERQ1