Application Note: AN_SY6280
Low Loss Power Distribution Switch TARGET DESIGN SPECIFICATION

Preliminary Spec

General Description

The SY6280 develops ultra-low Rds(on) switch with programmable current limiting to protect the power source from over current and short circuit conditions. It integrates the over temperature protection and discharges the output capacitor during the shutdown. In case the output is pulled higher than the input voltage under the shutdown, the SY6280 can block the current flowing from the output to the input.

Features

- Distribution voltages: 2.4 V to 5.5 V
- Programmable current limit
- Enable polarity: active high
- Over temperature shutdown and automatic retry
- Reverse blocking (no body diode)
- At shutdown, OUT can be forced higher than IN
- Automatic output discharge at shutdown
- Compact SOT23 packages minimize the board space.

Applications

- USB 3G Datacard
- USB Dongle
- MiniPCI Accessories
MiniPCI Accessories

Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Ordering Information

 SY6280 \square ($\square \square$)Package Code
Optional Spec Code

Ordering Number	Package type	Note
SY6280AAC	SOT23-5	----

Typical Applications

Figure 1. Schematic Diagram

Pinout (top view)

Pin Name	Pin number	Pin Description
IN	5	Input pin
GND	2	Ground pin
OUT	1	Output pin
EN	4	ON/OFF control. Pull high to enable IC. Do not float.
ISET	3	Current limit programming pin. Connecta resistor Rset from this pin to GND to program the current limit: dlim (A) $=6800 /$ Rset (ohm)

Absolute Maximum Ratings (Note 1)
All pins 6V
Power Dissipation, Pd @ $\mathrm{TA}=25^{\circ} \mathrm{C}$ SOT23-5 0.6W
Package Thermal Resistance (Note 2)
θ_{JA} $200^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лс }}$ $130^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature Range $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 2)HBM (Human Body Mode)2kV
MM (Machine Mode) 200 V
Recommended Operating Conditions (Note 3)
IN- 2.4 V to 5.5 V
All other pins $0-5.5 \mathrm{~V}$
Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

SIIERGY

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{CL}=1 \mathrm{uF}\right.$, per channel, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified $)$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage Range	$\mathrm{V}_{\text {IN }}$		2.4		5.5	V
Shutdown Input Current	$\mathrm{I}_{\text {SHDN }}$	Open load, IC Disabled.		0.1	1	$\mu \mathrm{A}$
Quiescent Supply Current	I_{Q}	Open load, IC Enabled.		25		$\mu \mathrm{A}$
FET RON	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 1}$			80		$\mathrm{m} \Omega$
EN Rising Threshold	$\mathrm{V}_{\text {EN(H) }}$		2			V
EN Falling Threshold	$\mathrm{V}_{\mathrm{EN}(\mathrm{L})}$				0.8	V
EN Leakage	$\mathrm{I}_{\text {EN }}$	$\mathrm{V}_{\mathrm{EN}}=5.5 \mathrm{~V}$			1)	$\mu \mathrm{A}$
IN UVLO Threshold	$\mathrm{V}_{\text {IN,UVLO }}$			01	2.3	V
IN UVLO Hysteresis	$\mathrm{V}_{\text {IN, HYS }}$			0.1		V
Over Current Limit	$\mathrm{I}_{\text {LIM }}$	$\mathrm{R}_{\text {SET }}=6.8 \mathrm{k} \Omega$	0.75	1	1.25	A
	$\mathrm{I}_{\text {LIM(min) }}$			$\bigcirc 0.4$		A
	$\mathrm{I}_{\mathrm{LIM}(\text { max })}$			2		A
Turn-ON Time	T_{ON}	$\mathrm{R}_{\mathrm{L}}=10 \Omega$		120		us
Turn-OFF Time	$\mathrm{T}_{\text {OFF }}$	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{uF}$		10		us
OUT Shutdown Discharge Resistance	$\mathrm{R}_{\text {DIS }}$	$)^{\prime}$		150		Ω
Thermal Shutdown Temperature	$\mathrm{T}_{\text {SD }}$	\cdots		130		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis		8		20		${ }^{\circ} \mathrm{C}$

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: $\theta \mathrm{JA}$ is measured in the natural convection at $\mathrm{TA}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Pin 2 of SOT23-5 packages is the case position for $\theta \mathrm{JC}$ measurement.

Note 3: The device is not guaranteed to function outside its operating conditions

Typical Operating Characteristics

Operation

The SY6280 is a current limited P-channel MOSFET power switch designed for high-side load-switching applications. There is no parasitic body diode between drain and source of the MOSFET, so the SY6280 prevents current flow from out to input when out being externally forced to a higher voltage than vin when chip is disabled.

Over-current protection

When the over-current condition is sensed, the gate of the pass switch is modulated to achieve constant output current. Under output short circuit conditions, the normal current limit folded back 50%. If the over current condition presists for a long enough time, the junction temperature may exceed 130C, and overtemperature protection will shut down the part. Once the chip temperature drops to 110 C , the part will restart.

Supply Filter Capacitor

In order to prevent the input voltage drooping during hot-plug events, a $10 u \mathrm{~F}$ ceramic capacitor form $\mathrm{V}_{\text {IN }}$ to GND is strongly recommended. However, higher capacitor values could reduce the voltage droop on the input further. Furthermore, an output short will cause ringing on the input without the input capacitor It could destroy the internal circuitry when the input transient exceed 6 V which is the absolute maximum supply voltage even for a short duration.

Current Limiting Setting

Current limiting is programmable to protect the power source from over current and short circuit conditions. Connect a resistor $\mathrm{R}_{\text {SET }}$ from this ISET pin to GND to program the current limit:

Anductance) between the port and the capacitor and improve transient performance.
Input and output capacitors should be placed closed to the IC and connected to ground plane to reduce noise coupling.
> Locate the ceramic bypass capacitors as close as possible to the $\mathrm{V}_{\text {IN }}$ pins and $\mathrm{V}_{\text {out }}$ pins of SY 6280 .
$\operatorname{Ilim}(A)=6800 /$ Rset (ohm).
> Locate the output capacitor as close to the connectors as possible to lower impedance(mainly

PCB Layout Guide

For best performance of the SY6280, the following guidelines must be strictly followed:
> Keep all $\mathrm{V}_{\text {Bus }}$ traces as short and wide as possible and use at least 2 ounce copper for all $\mathrm{V}_{\text {Bus }}$ traces.
> Place a ground plane under all circuitry to lower both resistance and inductance and improve DC and transient performance.

PCB Layout Guide(SOT23-5)

SOT23-5 Package outline \& PCB layout design

Notes: All dimensions are in millimeters.
Al dimensions don't include mold flash \& metal burr.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Silergy manufacturer:
Other Similar products are found below :
NCP45520IMNTWG-L TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G TLE7244SL MIC2033-05BYMT-T5
MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1640QGDV-TR
KTS1641QGDV-TR NCV459MNWTBG NCP4545IMNTWG-L NCV8412ASTT1G NCV8412ASTT3G BTT3018EJXUMA1
FPF2260ATMX SLG59M1557VTR BD2222G-GTR NCP45780IMN24RTWG NCP45540IMNTWG-L MC10XS6200EK MC10XS6225EK MC25XS6300EK MC33882PEP MC10XS6325EK TPS2021IDRQ1 TPS2103D TPS22954DQCR TPS22958NDGKR TPS22994RUKR TPS2561AQDRCRQ1 MIC2005-0.5YML-TR MIC2098-1YMT-TR MIC2098-2YMT-TR MIC94062YMT TR MIC94064YMT-TR MP6231DN-LF MP62551DGT-LF-P BTS117 BTS500151TADATMA2 VN540SP-E MIC2015-1.2YM6 TR MIC2026-2YM MIC2075-2YM MIC2095-2YMT-TR

