

SY6952B

2A Single-Cell High Efficiency Switching Charger with Adaptive Input Current Limit

General Description

SY6952B is a 4.0-23V input, 2A single-cell synchronous buck Li-Ion battery charger, suitable for portable application. VSET pin is convenient for different cell voltage. Integrated 800 kHz synchronous buck regulator consists of 25V rating FETs with extremely low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

Ordering Information

— Optional Spec Code

Ordering Number	Package type	Note
SY6952BFCC	SO8E	

Features

- Wide Input Voltage Range: 4.0V to 23V
- High Efficiency Int. Synchronous Buck Regulator with Fixed 800kHz Switching Frequency
- Trickle Current / Constant Current / Constant Voltage Charge Mode
- Adaptive input current limit
- Programmable Charging Timeout
- 4.35 and 4.2V selectable cell voltage
- Programmable (2A MAX) Constant Charge Current
- Input Voltage UVLO and Battery OVP
- Over Temperature Protection
- Output Short Circuit Protection
- Charge Status Indication
- Normal Synchronous Buck Operation when Battery Removed
- Compact package SO8E

Applications

- Cellular Telephones,
- PDA, MP3 Players, MP4 Players
- Digital Cameras
- Bluetooth Applications
- PSP Game Players, NDS Game Players
- Notebook

Figure1. Schematic Diagram

DS_SY6952B Rev. 0.9C © 2019 Silergy Corp. Silergy Corp. Confidential- Prepared for Customer Use Only 1 All Rights Reserved.

Pinout (top view)

Top Mark: ALBxyz (device code: ALB, x=year code, y=week code, z= lot number code)

Name	Number	Description
TIM	1	Charge time limit pin. Connect this pin with a capacitor to ground. Internal current source charge the capacitor for TC mode and CC mode's charge time limit. TC charge time limit is about 1/9 of CC charge time.
RS	2	Charge current program pin. Connect a current sense resistor from RS pin to BAT pin. Average charge current is detected for both TC mode and CC mode.
BAT	3	Battery positive pin.
NTC	4	Thermal protection pin. UTP threshold is about $75\% V_{IN}$ and OTP threshold is about $30\% V_{IN}$. Pull up to VIN can disable charge logic and make the IC operate as normal buck regulator. Pull down to ground can shut down the IC.
VSET	5	VSET is pull down internally. Open or pull down for 4.2V cell voltage, pull up for 4.35V cell voltage.
STAT	6	Charge status indication pin. It is open drain output pin and can be used to turn on a LED to indicate the charge in process. When the charge is done, LED is off.
LX	7	Switch node pin. This pin connects the drains of the integrated main and synchronous power MOSFET switches. Connect to external inductor.
IN	8	Positive power supply input pin. V_{IN} ranges from 4V to 23V for normal operation. It has UVLO function and must be120mV greater than the battery voltage to enable normal operation.
GND	Exposed pad	Ground pin.

Absolute Maximum Ratings (Note 1)

VSET, NTC, STAT	0.5- 32V
IN, BAT, LX	0.5- 25V
TIM	0.5- 3.6V
RS	BAT-0.3V to BAT+0.3V
LX Pin current continuous	2.5A
Power Dissipation, PD @ TA = 25 °C, SO8E	3.3W
Package Thermal Resistance	
θ ја	30 °C/W
θ JC	20 °C/W
Junction Temperature Range	40 °C to 150 °C
Lead Temperature (Soldering, 10 sec.)	260 °C
Storage Temperature Range	65 °C to 125 °C
ESD Susceptibility (Note 2)	
HBM (Human Body Mode)	2kV
MM (Machine Mode)	200V

Silergy Corp. Confidential- Prepared for Customer Use Only 2 All Rights Reserved.

Recommended Operating Conditions

VSET, NTC, STAT	0.3- 30V
IN, BAT, LX	0.3- 23V
TIM	
RS	BAT-0.1V to BAT+0.1V
LX Pin current continuous	2A
Junction Temperature Range	20 °C to 125 °C
Ambient Temperature Range	40 °C to 85 °C

Electrical Characteristics

 $T_A=25\ \mbox{C},\ V_{IN}=15V,\ GND=0V,\ C_{IN}=10uF,\ L=6.8uH,\ R_S=25m\Omega,\ C_{TIM}=330nF,\ unless \ otherwise \ specified.$

Symbol	Parameter	Conditions		Tvp	Max	Unit		
Bias Supply (V _{IN})								
VIN	Supply voltage		4.0		23	V		
V _{UVLO}	V _{IN} under voltage lockout threshold	V _{IN} rising and measured from V _{IN} to GND			3.9	V		
$\Delta V_{\rm UVLO}$	V _{IN} under voltage lockout hysteresis	$\begin{array}{ccc} Measured & from & V_{IN} & to \\ GND \end{array}$		190		mV		
V _{OVP}	Input overvoltage protection	V_{IN} rising and measured from V_{IN} to GND	23			V		
ΔV_{OVP}	Input overvoltage protection hysteresis	$\begin{array}{ccc} Measured & from & V_{IN} & to \\ GND & \end{array}$		750		mV		
Quiescent C	urrent							
IBAT	Battery discharge current	Pull Down NTC			25	uA		
I _{IN}	Input leakage current	Disable Charge			1.5	mA		
Oscillator an	nd PWM							
fosc	Oscillator frequency		640	800	960	kHz		
D	PFET duty cycle				100	%		
Power MOS	FET							
RNFET	RDS(ON) of N-FET	Include bond-wire		150		mΩ		
R _{PFET}	R _{DS(ON)} of P-FET			160		mΩ		
Voltage Reg	ulation	· · ·						
v	Low VSET for 4.2V cell voltage	0 °C - T - 70 °C	4.16	4.20	4.24			
VCV	High VSET for 4.35V cell voltage	$0 C <= I_A <= /0 C$	4.30	4.35	4.40	v		
	4.2V CV threshold for Recharge		50	100	150	X 7		
ΔV_{RCH}	4.35V CV threshold for Recharge	$0 C \ll T_A \ll 10 C$	100	150	200	mV		
V _{TRK}	TC charge mode voltage threshold	$0 \ \mathrm{C} \ll T_{\mathrm{A}} \ll 70 \ \mathrm{C}$	2.2	2.5	2.8	V		
Battery Con	nect Detection							
	NTC voltage threshold for Battery		000/		0.004	* 7		
V DET	detect	NTC Falling Edge	80%		90%	VIN		
t DET	Detect delay time		30	35	40	ms		
Charge Cur	rent	· · ·						
	Internal charge current accuracy for	1 05 M/D	100/		1.00/			
	Constant Current Mode	$I_{CC}=25 \text{mV/R}_{S}$	-10%		10%			
	Internal charge current accuracy for	L 2.5	500/		50%			
	Trickle Current Mode	$I_{TC}=2.5 \text{m} \text{v/Rs}$	-50%		50%			
Charge Terr	nination							
I _{TERM}	Charge Termination Current			10%		I _{CC}		
T _{TERM}	Termination delay time			30		ms		
Input curren	nt limit slow response	· · · · ·						
V	IN voltage falling threshold at high			1.0		V		
V INSL	current			4.0		v		
ΔV_{INSL}	IN voltage hysteresis at high current			50		mV		
Input curren	nt limit quick response							
	IN voltage falling threshold at high			4.4		V		
$\Delta \mathbf{v}$	current			4.4		v		
ΔV_{INQK}	IN voltage hysteresis at high current			100		mV		
Output Volt	age OVP	·						
V _{OVP}	Output voltage OVP threshold		105%	110%	115%	V _{CV}		
Output Shor	t Protection	· · · · · · · · · · · · · · · · · · ·						
VSHOT	Output short protection threshold	V _{BAT} falling edge	1.70	2.00	2.30	V		
f _{FBK}	Frequency fold back	V _{BAT} <2V		12.5%		fosc		
ILM	Power FET current limit			4		A		
Timer								

SY6952B

T _{TC}	Trickle current charge timeout	C	0.425	0.5	0.575	hour		
Tcc	Constant current charge timeout	CTIM=330IIF	3.825	4.5	5.175	hour		
T _{MC}	Charge mode change delay time			30		ms		
TRCHG	Recharge time delay			30		ms		
Battery The	rmal Protection NTC							
UTD	Under temperature protection		70%	75%	80%			
UIP	Under temperature protection hysteresis	Falling edge		5%		V		
OTD	Over temperature protection		28%	30%	32% V _{IN}			
OIF	Over temperature protection hysteresis	Rising edge		2%				
Automatic S	hutdown							
ΔV_{ASD}	ASD voltage threshold hysteresis	$\begin{array}{llllllllllllllllllllllllllllllllllll$		80		mV		
Thermal Shu	Thermal Shutdown							
T _{SD}	Thermal shutdown temperature	Rising Threshold		160		С		
TSDHYS	Thermal shutdown temperature hysteresis			20		С		

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25 \ C$ on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3: The device is not guaranteed to function outside its operating conditions

Side view

Notes: All dimension in MM All dimension don't not include mold flash & metal burr

Taping & Reel Specification

1. Taping orientation

SO8E

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Reel width(mm)	Trailer length(mm)	Leader length (mm)	Qty per reel
SO8E	12	8	13''	12.4	400	400	2500

3. Others: NA

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2018 Silergy Corp.

All Rights Reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by Silergy manufacturer:

Other Similar products are found below :

NCP1851BFCCT1G NCP1855FCCT1G FAN54063UCX MP2615GQ-P LC05132C01NMTTTG ISL95522HRZ BD8665GW-E2 ISL95522AIRZ S-82D1AAE-A8T2U7 S-82D1AAA-A8T2U7 S-8224ABA-I8T1U MP2615CGQ-P ISL6251HRZ ISL6253HRZ ISL6292-2CR3 ISL6292BCRZ-T ISL6299AIRZ ISL9211AIRU58XZ-T ISL9214IRZ ISL9220IRTZ-T FAN54161UCX DW01-A/J DW01A 4056H 4056D TP4056 TP4054 TP4057 IP2326_NPD IP2709_BF20WP TP4057 TP4054 TP4056-MS TP4057-MS TP4054-MS SY6982CQDC SLM6335 SLM6500S TP4057 DW01 AP5056HSPER EG4321 GN4054B HG4054M5/TR 4060 4061 4061H 4056A 4056V 4060H