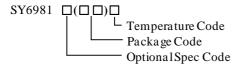


Application Note: SY6981

High Efficiency, 1.2A


Two-cell Boost Li-Ion Battery Charger

General Description

SY6981 is a $3.6\text{-}5.5V_{\mathrm{IN}},~1.2A$ two-cell synchronous Boost Li-Ion battery charger which integrates 1MHz switching frequency and full protection functions. The charge current up to 1.2A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneously. It also has a programmable charge timeout for safety battery charge operation and a programmable input voltage threshold for adaptive input current limit. SY6981 can disconnect output when there is an output short circuit or shutdown. It consists of 18V rating FETs with extremely low on resistance to achieve high charge efficiency and simple peripheral circuit design.

SY6981 along with small QFN3×3 footprint provides small PCB area application.

Ordering Information

Ordering Number	Package type	Note
SY6981QDC	QFN3×3-16	X

Features

- Low Profile QFN3×3 Package
- Integrated Synchronous Boost with 18V Rating Low R_{DSON} FETs for High Charge Efficiency
- Trickle Current / Constant Current / Constant Voltage Charge Mode
- Programmable Input Voltage Threshold for Adaptive Current Limit.
- Maximum 1.2A Constant Charge Current
- Charge Current Information Indication.
- Programmable Charge Timeout
- Programmable Constant Charge Current
- Selectable Constant Voltage
- $\pm 0.5\%$ Battery Voltage Accuracy
- Thermal Regulation Protection
- External Shutdown Function
- Input Voltage UVLO and OVP
- Over Temperature Protection
- Output Short Circuit Protection
- Charge Status Indication
- Normal Synchronous Boost Operation When the
 Battery is Removed

Applications

- Cellular Telephones, PDA, MP3 Players, MP4 Players
- Digital Cameras
- Bluetooth Applications
- PSP Game Players, NDS Game Players
- Notebook

Typical Applications

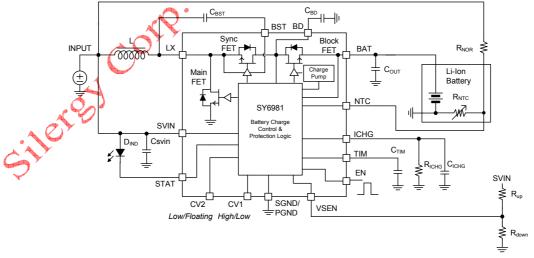
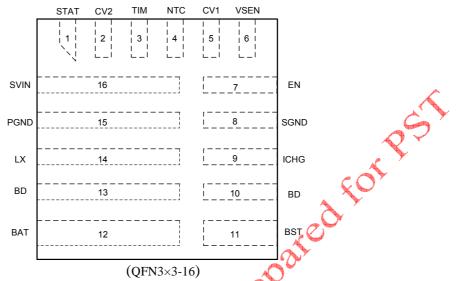



Figure 1. Schematic Diagram

Pinout (top view)

Top Mark: cRxyz, (Device code: cR, x=year code, y=week code, z= lot number code)

	•	CKxyz, (Device code: ck, x=year code, y=week code, z= lot number code)
Name	Pin Number	Description
STAT	1	Charge status indication pin. It is open-drain output pin and pulled high to SVIN through
SIAI	1	a LED to indicate the charge in process. When the charge is done, the LED will be off.
		Battery CV voltage selection pin. Program 4 different CV thresholds by setting different
CV2	2	voltage on this pin and pin5. Floating or grounding this pin in the application. CV2 pin
		can't be pulled high to any bias voltage higher than 3.3V.
		Charge time limit pin. Connect this pin with a capacitor to ground. Internal current source
TIM	3	charge the capacitor for TC mode and CC mode's charge time limit. TC charge time limit
		is about 1/9 of CC charge time.
		Thermal protection pin. UTP threshold is typical 76% of V _{SVIN} and OTP threshold is
NTC	4	typical 30.5% of V _{SVIN} . Pull up to SVIN can disable charge logic and make the IC operate
		as a normal Boost regulator. Pull down to ground can shut down the IC.
CV1	5	Battery CV voltage selection pin. Program 4 different CV thresholds by setting different
0,1		voltage on this pin and pin2. The detailed information is shown in description section.
VSEN	6	Voltage sense of SVIN. If the voltage drops to internal 1.195V reference voltage, the
		SVIN will be clamped to setting value and input current will be limited.
EN	7	Enable control pin. High logic for enable on, and low logic for enable off.
SGND	8	Signal ground pin.
	1	Charge current program pin. Pull down to GND with a resistor R _{ICHG} . The mirror current
ICHG	499	about 1/10000 of the blocking FET current will dump into the external RC network
		through ICHG pin and compared to the internal reverence 1V.
A	(2) Y	So $I_{CC} = (1V/R_{ICHG}) \times 10000$, $I_{TC} = (1V/R_{ICHG}) \times 1000 + 0.02$.
BD A	10, 13	Connect it to the drain of internal blocking FET. Bypass at least a 4.7µF ceramic cap to
C	<u>′</u>	GND.
BST	11	Boost-strap pin. Supply rectified FET's gate driver. Decouple this pin to LX with a 0.1μF
DATE	10	ceramic cap.
BAT	12	Battery positive pin.
LX	14	Switch node pin. Connect it to the external inductor.
PGND	15	Power ground pin.
GI III	16	Analog power input pin. Connect a MLCC from this pin to ground to decouple high
SVIN		harmonic noise. This pin has OVP and UVLO function to make the charger operate
		within safe input voltage range.

CV2, TIM, BST-LX LX Pin Continuous Current Power Dissipation, P _D @ T _A = 25°C, QFN3×3 Package Thermal Resistance (Note2) θ _{JA} 38°C θ _{JA} 38°C Junction Temperature Range 40°C to 125 Recommended Operating Conditions (Note3) SVIN SVIN SVIN SVIN 3.6V to 5. STAT, NTC, CV1, VSEN, EN, ICHG, BD, BAT, LX, CV2, TIM, BST-LX LX Pin Continuous Current Junction Temperature Range 40°C to 125 Ambient Temperature Range 40°C to 125 Ambient Temperature Range 40°C to 125 Ambient Temperature Range	CV2 TIM DCT I V		18
Power Dissipation, P_D @ $T_A = 25^{\circ}C$, QFN3×3			
Package Thermal Resistance (Note2) 38°C θ _{JC} 4°C Junction Temperature Range -40°c to 125 Lead Temperature Range -55°C to 125 Recommended Operating Conditions (Note3) SVIN SVIN 3.6V to 5. STAT, NTC, CV1, VSEN, EN, ICHG, BD, BAT, LX, -0.3V to 1. CV2, TIM, BST-LX -0.3V to 3. LX Pin Continuous Current -0.3V to 1. Junction Temperature Range -40°C to 125 Ambient Temperature Range -40°C to 85			
θ _{JC} ————————————————————————————————————			
θ _{JC} ————————————————————————————————————			38°C/\
Junction Temperature Range 40°C to 125 Lead Temperature (Soldering, 10 sec.) 260 Storage Temperature Range 68°C to 125 Recommended Operating Conditions (Note3) SVIN 3.6V to 5. STAT, NTC, CVI, VSEN, EN, ICHG, BD, BAT, LX, 0.3V to 1. CV2, TIM, BST-LX 0.3V to 3. LX Pin Continuous Current 40°C to 125 Ambient Temperature Range 40°C to 85	V		
Lead Temperature (Soldering, 10 sec.) Storage Temperature Range			
Recommended Operating Conditions (Note3) SVIN	Lead Temperature (Soldering, 10 sec.)		260°
SVIN 3.6V to 5. STAT, NTC, CV1, VSEN, EN, ICHG, BD, BAT, LX, 0.3V to 1 CV2, TIM, BST-LX -0.3V to 3. LX Pin Continuous Current Junction Temperature Range 40°C to 125 Ambient Temperature Range 40°C to 85	Storage Temperature Range		65°C to 125°
SVIN 3.6V to 5. STAT, NTC, CV1, VSEN, EN, ICHG, BD, BAT, LX, 0.3V to 1 CV2, TIM, BST-LX -0.3V to 3. LX Pin Continuous Current Junction Temperature Range 40°C to 125 Ambient Temperature Range 40°C to 85	Recommended Operating Conditions (Note3)		A
STAT, NTC, CV1, VSEN, EN, ICHG, BD, BAT, LX, -0.3V to 1 CV2, TIM, BST-LX -0.3V to 3 LX Pin Continuous Current Junction Temperature Range -40°C to 125 Ambient Temperature Range -40°C to 85	SVIN	<u> </u>	3.6V to 5.5
CV2, TIM, BST-LX ————————————————————————————————————	STAT. NTC. CV1. VSEN. EN. ICHG. BD. BAT. LX		0.3V to 16
Junction Temperature Range	CV2, TIM, BST-LX		0.3V to 3.3
Junction Temperature Range	LX Pin Continuous Current	<u>.</u>	5
Confidential Pret	Junction Temperature Range		40°C to 125°
	Ambient Temperature Range	· -{}`	40°C to 85°
		.05	
		<i>Y</i>	
		,	
	ر م 🛇 🗸 🛇 م		
Gilered			
Silered			
Gilereb.			
Giletto			
	Silered Corp.		

Electrical Characteristics

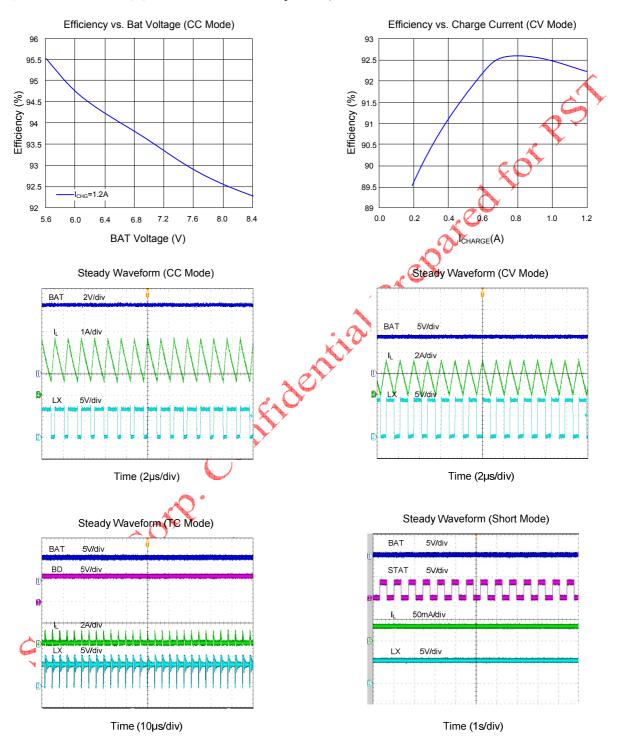
 $T_A=25\,^{\circ}\text{C},\ V_{IN}=5\text{V},\ GND=0\text{V},\ C_{IN}=4.7\mu\text{F},\ L=0.68\mu\text{H},\ R_{ICHG}=10\text{k}\Omega,\ C_{TIM}=470\text{nF},\ unless\ otherwise\ specified}.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Bias Supply (V _{SVIN})						
Supply Voltage	V _{SVIN}		3.6		16	V
V _{SVIN} Under Voltage Lockout Threshold	V _{UVLO}	V _{SVIN} rising and measured from V _{SVIN} to GND			3.6	Ŷ
V _{SVIN} Under Voltage Lockout Hysteresis	ΔV_{UVLO}	Measured from V _{SVIN} to GND		100	Q	mV
Input Over Voltage Protection	V _{OVP}	V _{SVIN} rising and measured from V _{SVIN} to GND	5.8	~ (35	V
Input Over Voltage Protection Hysteresis	ΔV_{OVP}	Measured from V _{SVIN} to GND		0,5		V
Quiescent Current						
Battery Discharge Current	I_{BAT}	Shut down IC, EN=NTC=0	D.		10	μΑ
Input Quiescent Current	I_{IN}	Disable charge, EN=1,NTC=0	>		1.5	mA
Oscillator and PWM	T		•	,	,	
Switching Frequency	f_{SW}	A Y		1000		kHz
Main N-FET Minimum Off Time	t _{MIN_OFF}	With 18V rating		100		ns
Main N-FET Maximum Off Time	t _{MAX_OFF}	With 18V rating		30		μs
Main N-FET Minimum On Time	t _{MIN_ON}	With 18V rating		100		ns
Power MOSFET		· · · · · · · · · · · · · · · · · · ·				
R _{DS(ON)} of Main N-FET	R _{NFET_M}			100		mΩ
R _{DS(ON)} of Rectified N-FET	R _{NFET_R}			50		$m\Omega$
R _{DS(ON)} of Blocking N-FET	∘R _{NFET_B}			50		$m\Omega$
Voltage Regulation	T		1	1	1	
		V _{CV1} >1.5V, V _{CV2} is floating	8.159	8.2	8.241	
Battery Charge Voltage	V_{BAT_REG}	V _{CV1} <0.4V, V _{CV2} is floating	8.358	8.4	8.442	V
200		V _{CV1} >1.5V, V _{CV2} <0.4V V _{CV1} <0.4V, V _{CV2} <0.4V	8.656 8.756	8.7 8.8	8.743 8.844	
High Level Logic for CV1	V _{CV_H}	ζγι ωττ, τζγ2 ωττ	1.5			V
Low Level Logic for CV1,CV2	V _{CV_L}				0.4	V
Recharge Threshold Refer to VBAT_REG	ΔV_{RCH}		100	200	300	mV
Trickle Current Charge Mode Battery Voltage Threshold	V _{TRK}	Rising edge threshold	5.4	5.6	5.8	V

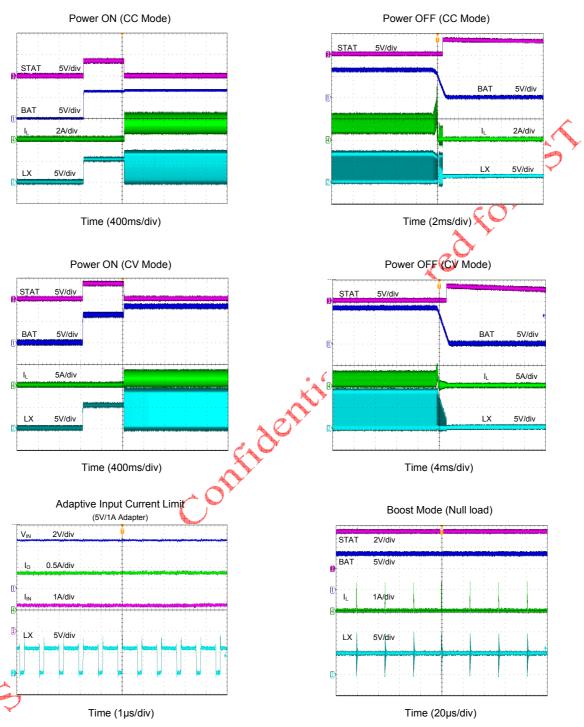
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	svin ns %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/11
	%
	/0/
Output Voltage OVP Threshold V _{OVP} 105% 110% 15% V _{BA} Input Voltage Threshold for Adaptive Current Limit	ıΑ
Input Voltage Threshold for Adaptive Current Limit	
Input Voltage Threshold for Adaptive Current Limit	T_REG
Voltage Reference of VSEN Von. 117 1105 122	
U	V
Timer	
C = 220 nH	hour
Constant Current Charge Timeout t_{CC} 4.5 5.82	hour
Charge Mode Change Delay Time t _{MC} 30	ms
Termination Delay Time t _{TERM} 30	ms
Recharge Time Delay t _{RCHG} 30	ms
Short Circuit Protection	
Output Short Protection Threshold V _{SHORT} 1.70 2.00 2.30	V
Linear Charger Mode	
Rattery Charger Current When the	т
Blocking FET is in Linear Mode Section 18C Short 10%	I_{CC}
BD Voltage Regulation V_{BD} $V_{SHORT} < V_{BAT} < V_{TRK}$ 5.8 6 6.2	V
Enable ON/OFF Control	
High Level Logic for Enable	V
Control V _{EN_H} 1.5	V
Low Level Logic for Enable	V
Control VEN_L	v
Battery Thermal Protection NTC	
Under Temperature Protection V 750/ 770/	
Under Temperature Protection V _{NTC_UTP} 75% 76% 77%	
Under Temperature Protection V Folling odge 60/	
Hysteresis VNTC_UTP_HYS Failing edge 0%	
	V_{SVIN}
Over Temperature Protection V _{NTC_OTP} 29.5% 30.5% 31.5%	
Over Temperature Protection Hysteresis V _{NTC_OTP_HYS} Rising edge 2%	
Hysteresis	
Thermal Fold-back and Thermal Shutdown	
Thermal Fold-back Threshold T_{Fold} Rising edge 120	°C
Thermal Fold-back Threshold T	°C
Hysteresis Told back Threshold T _{Fold_HYS}	°C
Thermal Fold-back Ratio 0.25	I _{CC}
Thermal Shutdown Temperature T _{SD} Rising edge 160	°C
Thermal Shutdown Temperature	9C
Hysteresis T_{SD_HYS} 30	$^{\circ}$ C

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the

operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Sileray Corp.


Typical Performance Characteristics

(T_A=25°C, V_{IN}=5V, R_{ICHG}=10k Ω , unless otherwise specified.)

General Function Description

SY6981 is a 3.6-5.5V_{IN}, 1.2A two-cell synchronous Boost Li-Ion battery charger which integrates 1MHz switching frequency and full protection functions. The charge current up to 1.2A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneously. It also has programmable charge timeout for safety battery charge operation and a programmable input voltage threshold for adaptive input current limit. SY6981 can disconnect output when there is an output short circuit or shutdown. It consists of 18V rating FETs with extremely low on resistance to achieve high charge efficiency and simple peripheral circuit design.

Charging Status Indication Description

- Charge-in-process Pull and keep STAT pin low:
- 2. Charge Done Pull and keep STAT pin high;
- 3. Fault Mode Output high and low voltage alternatively at the frequency of 1.3Hz. Connect a LED from SVIN to STAT pin, LED on means charge-in-process, LED off means charge done, LED flashing at 1.3Hz means fault mode. Fault Mode includes Input OVP, BAT OVP, BAT Short Circuit, NTC(UTP/OTP), Thermal Shutdown and Charge Timeout.

Switching Mode Boost Charger Basic Operation Description

Switching Mode Control Strategy

SY6981 is a switching mode Boost charger for the applications with USB power input. The 1MHz fixed frequency is easy for the size minimization of peripheral circuit design.

Operation Principle

SY6981 can normally work with or without Li-Ion battery.

Battery Present

When the battery is present, SY6981 will work on trickle current charge, constant current charge and constant voltage charge mode according to the battery voltage.

Battery Absent

If there's no battery connection detected through NTC pin, SY6981 will operate as a normal switching mode Boost converter. The internal constant current

loop and voltage loop are active both.

Basic Protection Principle

SY6981 has fully battery charging protection. When the input over voltage protection, the output over voltage protection, the thermal protection or the timeout protection happens, the Boost charger will stop switching immediately. When the V_{BAT} is lower than V_{SHORT} , the short circuit protection will happen. The main FET will be turned off firstly. The block FET will enter linear mode with 1/10 of I_{CC} charging current. When V_{BAT} returns to be higher than V_{SHORT} , the Boost charger will restart to work at light load and regulate V_{BD} at 6V. The linear charge current will keep 1/10 I_{CC} . When V_{BAT} returns to be higher than V_{TRK} , the Boost switching charger will take over.

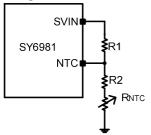
Adaptive Input Current Limit Principle

SY6981 can protect the input DC source from over load by the special loop control. The high charging current will cause a voltage drop at SVIN when the input DC source is over load. When VSEN drops below the internal 1.195V reference, SY6981 will decrease the duty cycle to reduce the charging current.

Constant Voltage Threshold Program Principle

SY6981 can program the constant voltage threshold thru the CV1 and CV2. When V_{CV1} is higher than 1.5V and CV2 is floating, the constant voltage threshold is 8.2V; when V_{CV1} is lower than 0.4V and CV2 is floating, the constant voltage threshold is 8.4V; when V_{CV1} is high than 1.5V and V_{CV2} is lower than 0.4V, the constant voltage threshold is 8.7V; when V_{CV1} and V_{CV2} are lower than 0.4V both, the constant voltage threshold is 8.8V.

Applications Information


Because of the high integration of SY6981, the application circuit based on this regulator IC is rather simple. Only input capacitor C_{IN} , output capacitor C_{OUT} , inductor L, NTC resistors R1, R2, input voltage threshold resistors R_{UP} , R_{DOWN} and timer capacitor C_{TIM} need to be selected for the target applications specifications.

NTC Resistor

SY6981 monitors battery temperature by measuring the input voltage and NTC voltage. The controller will trigger the UTP or OTP when the rate K (K= V_{NTC}/V_{SVIN}) reaches the threshold of UTP (K_{UT}) or OTP (K_{OT}). The temperature sensing network is showed as below.

Choose R1 and R2 to program the proper UTP and OTP points.

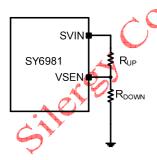
The calculation steps are:

- 1. Define K_{UT} , $K_{UT} = 75 \sim 77\%$
- 2. Define Kot, Kot = $29.5 \sim 31.5\%$
- Assume the resistance of the battery NTC thermistor is Rut at UTP threshold and Rot at OTP threshold.
- 4. Calculate R2,

$$R2 = \frac{Kot(1-Kut)Rut-Kut(1-Kot)Rot}{Kut-Kot}$$

5. Calculate R1

 $R1=(1/K_{OT}-1)(R2+R_{OT})$


If choose the typical values $\mbox{\ensuremath{\mbox{Ku}\mbox{$\scriptscriptstyle T$}=$}} 76\%$ and $\mbox{\ensuremath{\mbox{Ko}\mbox{$\scriptscriptstyle T$}=$}} 30.5\%$, then

R2=0.16Rut-1.16Rot R1=2.3(R2+Rot)

Input Voltage Threshold for Adaptive Current Limit

SY6981 will monitor input voltage by measuring the VSEN voltage, when VSEN drops below the internal 1.195V reference, SY6981 will decrease the duty cycle to reduce the charging current.

The input voltage sense network shows below, choose R_{UP} , R_{DOWN} to set the input voltage threshold V_{UNT} :

 $V_{\text{INT}} = \frac{V_{\text{SEN}} \times (R_{\text{down}} + R_{\text{up}})}{R_{\text{down}}} \qquad \text{unit: V}$

V_{SEN} is 1.195V.

Timer Capacitor CTIM

The charger also provides a programmable charge timer. The charge time is programmed by the capacitor connected between the TIM pin and GND. The capacitance is given by the formula:

$$C_{TIM} = 2 \times 10^{-11} S \times T_{CC}$$

unit: F

T_{CC} is the target constant charge time, unit: s.

Input Capacitor CIN

The ripple current through input capacitor is greater than

$$I_{C_{IN}_RMS} = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{2\sqrt{3} \times L \times F_{SW} \times V_{OUT}}$$

X5R or X7R ceramic capacitors with greater than $4.7\mu F$ capacitance are recommended to handle this ripple current.

Output Capacitor Cour

The output capacitor is selected to handle the output ripple noise requirements. This ripple voltage is related to the capacitance and its equivalent series resistance (ESR). For the best performance, it is recommended to use X5R or a better grade low ESR ceramic capacitor. The voltage rating of the output capacitor should be higher than the maximum output voltage. The minimum required capacitance can be calculated as:

$$C_{OUT} = \frac{I_{CC} \times (V_{OUT} - V_{IN})}{F_{SW} \times V_{OUT} \times V_{RIPPLE}}$$

 V_{RIPPLE} is the peak to peak output ripple, I_{CC} is the setting charge current.

For SY6981, output capacitor is paralleled by C_{BD} and C_{BAT} , for smaller output ripple noise, each capacitor with greater than $10\mu F$ capacitance is recommended.

Inductor L

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the average input current. The inductance is calculated as:

$$L = \left(\frac{V_{\text{IN}}}{V_{\text{OUT}}}\right)^2 \frac{\left(V_{\text{OUT}} - V_{\text{IN}}\right)}{I_{\text{CC}} \! \times \! F_{\text{SW}} \! \times \! 40\%}$$

Where F_{SW} is the switching frequency and I_{CC} is the setting charge current.

The SY6981 is quite tolerant of different ripple current amplitudes. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

 The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{\text{SAT,MIN}} > \left(\frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \!\! \times I_{\text{CC}} + \!\left(\frac{V_{\text{IN}}}{V_{\text{OUT}}}\right) \!\! \times \!\! \frac{(V_{\text{OUT}} - V_{\text{IN}})}{2 \! \times \! F_{\text{SW}} \! \times \! L}$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<10mohm to achieve a good overall efficiency.

Layout Design

The layout design of SY6981 regulator is relatively simple. For the best efficiency and to minimize noise

- problems, we should place the following components close to the IC: C_{SVIN} , L, C_{BD} .
- The loop of main MOSFET, rectifier diode, and C_{BD} must be as short as possible
- 2) It is desirable to maximize the PCB copper area connected to GND pin to achieve the best thermal and noise performance.
- 3) C_{SVIN} must be close to pin SVIN and GND.
- The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
- 5) The small signal components $R_{\rm ICHG}$, $R_{\rm UP}$ and $R_{\rm DOWN}$ must be placed close to the IC and must not be adjacent to the LX net on the PCB layout to avoid the noise problem.

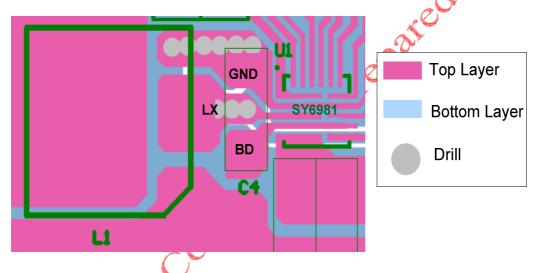
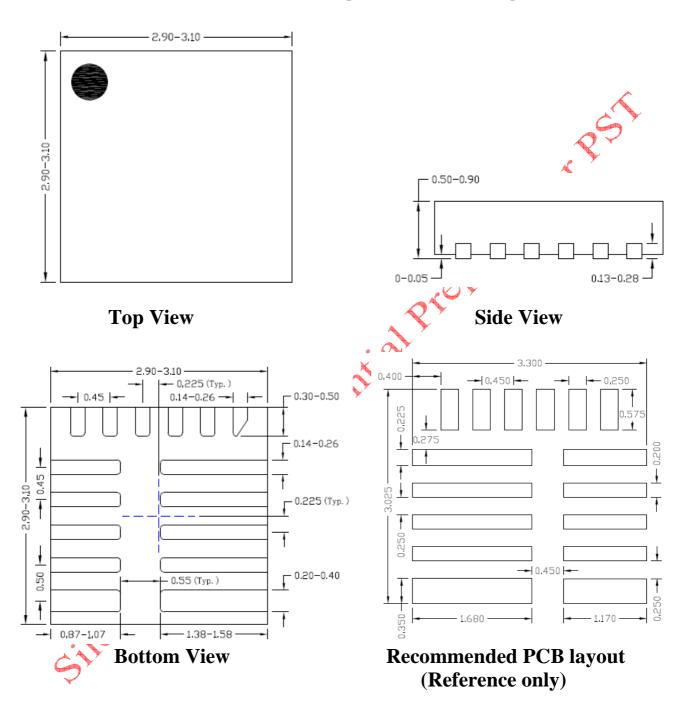
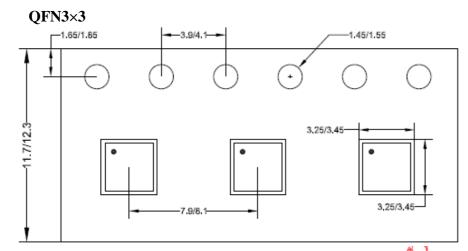
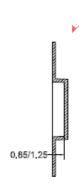



Figure 2. PCB Layout Suggestion

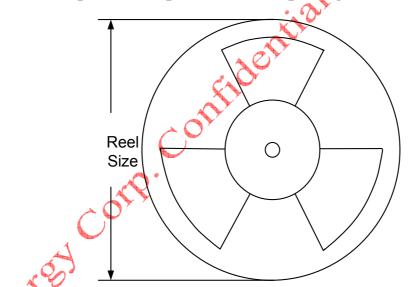
Sileray Corp

QFN3×3-16 Package Outline Drawing




Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

Feeding direction ——

2. Carrier Tape & Reel specification for packages

Package type	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
QFN3×3	12	8	13"	400	400	5000

3. Others: NA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by Silergy manufacturer:

Other Similar products are found below:

LV5117AV-TLM-H VN5R003HTR-E NCP1855FCCT1G FAN54063UCX NCP367DPMUEBTBG LC05132C01NMTTTG ISL78714ANZ

CM1104-EH CM1104-DBB CM1104-MBB XC6801A421MR-G ISL95521BHRZ ISL95521BIRZ MP2639AGR-P S-82D1AAE-A8T2U7

S-82D1AAA-A8T2U7 S-8224ABA-I8T1U MC33772CTA1AE MC33772CTC0AE BQ28Z610DRZR-R1 MCP73832-4ADI/MC

MCP73832T-2DCIMC MCP73833T-AMIMF MCP73833T-AMI/UN MCP73838-NVI/MF MCP73213-A6BI/MF MCP73831-2ACI/MC

MCP73831T-2ATIMC MCP73832-2ACI/MC MCP73832T-3ACIMC MCP73833T-FCI/MF MCP73853-IML BQ25895RTWR

BQ29704DSER BQ78Z100DRZR ISL78610ANZ FAN5403UCX NCP367DPMUECTBG FAN54015BUCX MAX8934BETI+

BQ24311DSGR BQ25100HYFPR BQ29707DSER MAX17048G+T10 BQ24130RHLR BQ25120AYFPR BQ29703DSER BQ771807DPJR

BQ25120AYFPT MAX17055ETB+T