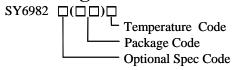


Application Note: SY6982C


High Efficiency, 2A, Two-Cell Boost Li-Ion Battery Charger

General Description

SY6982C is a $3.0-5.5V_{IN}$, 2A two-cell synchronous Boost Li-Ion battery charger integrates 1MHz switching frequency and full protection functions. The charge current up to 2A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneous. It also has a programmable charge timeout and adaptive input current limit with selectable threshold for safety battery charge operation. SY6982C can disconnect output when there is output short circuit or shutdown happens. It consists of 18V rating FETs with extremely low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

SY6982C along with small QFN3×3 footprint provides small PCB area application.

Ordering Information

Ordering Number	Package type	Note
SY6982CODC	OFN3×3-16	

Features

- Low Profile QFN3×3 Package
- Integrated Synchronous Boost with 18V Rating Low R_{DSON} FETs for High Charge Efficiency
- Trickle Current / Constant Current / Constant Voltage Charge Mode
- Adaptive Input Current Limit with selectable threshold
- Maximum 2A Constant Charge Current
- Charge Current Information Indication.
- Programmable Charge Timeout
- Programmable Constant Charge Current
- Constant Voltage Selectable
- Thermal Regulation Protection
- External Shutdown Function
- Input Voltage UVLO and OVP
- Over Temperature Protection
- Output Short Circuit Protection
- Charge Status Indication
- Normal Synchronous Boost Operation When Battery Removed

Applications

- Cellular Telephones, PDA, MP3 Players, MP4 Players
- Digital Cameras
- Bluetooth Applications
- PSP Game Players, NDS Game Players
- Notebook

Typical Applications

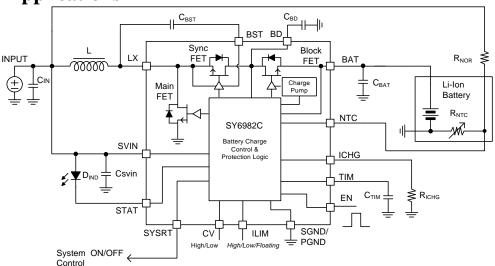
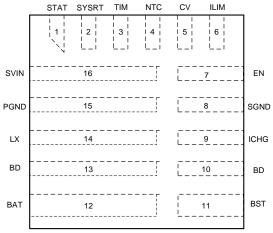



Figure 1. Schematic Diagram

Pinout (top view)

(QFN3×3-16)

Top Mark: XXxyz, (Device code: XX, x=year code, y=week code, z=lot number code)

	Top Mark: $XXxyz$, (Device code: XX, x =year code, y =week code, z = lot number code)						
Name	Pin Number	Description					
STAT	1	Charge status indication pin. It is open drain output pin and pulled high to S _{VIN} thru a					
SIAI	1	LED to indicate the charge in process. When the charge is done, LED is off.					
		System ON/OFF control pin. When V _{BAT} is lower than 6V, SYSRT pin outputs low logic					
SYSRT	2	to turn off the system operation; when V_{BAT} is high than 6V, SYSRT pin outputs high					
		logic to turn on the system operation.					
		Charge time limit pin. Connect this pin with a capacitor to ground. Internal current source					
TIM	3	charge the capacitor for TC mode and CC mode's charge time limit. TC charge time limit					
		is about 1/10 of CC charge time.					
		Thermal protection pin. UTP threshold is typical 76% V _{SVIN} and OTP threshold is typical					
NTC	4	30.5% V _{SVIN} . Pulling up to SVIN can disable charge logic and make the IC operate as					
		normal Boost regulator.					
CV	5	Battery CV voltage selection pin. Program 4 different CV thresholds by setting different					
		voltage on these two pins. The detailed information is shown in description section.					
II IM		Adaptive input current limit setting Pin. Select the permitted maximum input voltage					
ILIM	6	drop to trigger the input current limit function. Pull high for 500mV voltage drop, pull					
EN	7	low for 375mV, floating for 250mV.					
SGND	8	Enable control pin. High logic for enable on, and low logic for enable off. Signal ground pin.					
SUND	0	Charge current program pin. Pull down to GND with a resistor R _{ICHG} . The mirror current					
		about 1/10000 of the blocking FET current will dump into the external RC network thru					
ICHG	9	ICHG pin and compared to the internal reference 1V. So $I_{CC} = (1V/R_{ICHG}) \times 10000$,					
		$I_{TC}=(1V/R_{ICHG})\times 1000$.					
		Connect to the Drain of internal Blocking FET. Bypass at least a 4.7 µF ceramic cap to					
BD	10, 13	GND.					
D.C.E.	4.4	Boost-strap pin. Supply Rectified FET's gate driver. Decouple this pin to LX with a					
BST	11	0.1 μF ceramic cap.					
BAT	12	Battery positive pin.					
LX	14	Switch node pin. Connect to external inductor.					
PGND	15	Power ground pin.					
		Analog power input pin. Connect a MLCC from this pin to ground to decouple high					
SVIN	16	harmonic noise. This pin has OVP and UVLO function to make the charger operate					
		within safe input voltage area.					

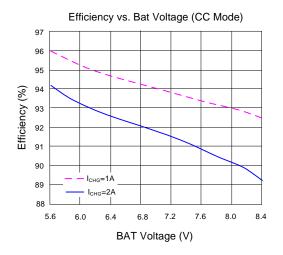
Absolute Maximum Ratings	
STAT, NTC, CV, ILIM, EN, ICHG, BD, BAT, LX, SVIN	
SYSRT, TIM, BST-LX	
LX Pin Current Continuous	5A
Power Dissipation, PD @ TA = 25 $^{\circ}$ C, QFN3 $^{\circ}$ 3	2.6W
Package Thermal Resistance	
θ _{JA}	38 ℃/W
θ $_{ m IC}$	
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	260 ℃
Storage Temperature Range	65 ℃ to 125 ℃
Recommended Operating Conditions	
SVIN	3V to 5.5V
STAT, NTC, CV, ILIM, EN, ICHG, BD, BAT, LX,	
SYSRT, TIM	-0.3V to 3.3V
LX Pin Current Continuous	5A
Junction Temperature Range	
Ambient Temperature Range	40 ℃ to 85 ℃

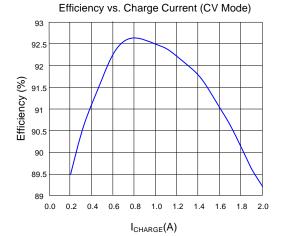
Electrical Characteristics

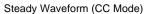
 $(T_A \!\!=\!\! 25~\text{C},\, V_{IN} \!\!=\!\! 5V,\, GND \!\!=\!\! 0V,\, C_{IN} \!\!=\!\! 4.7~\mu\text{F},\, L \!\!=\!\! 0.68~\mu\text{H},\, R_{ICHG} \!\!=\!\! 10k\Omega,\, C_{TIM} \!\!=\!\! 470n\text{F},\, unless otherwise specified.})$

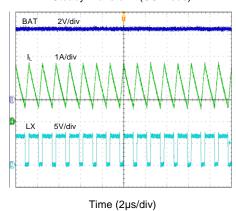
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Bias Supply (V _{SVIN})			,		,	
Supply Voltage	V_{SVIN}		3		16	V
V _{SVIN} Under Voltage Lockout Threshold	$V_{\rm UVLO}$	V_{SVIN} rising and measured from V_{SVIN} to GND			2.9	V
V _{SVIN} Under Voltage Lockout Hysteresis	ΔV_{UVLO}	$\begin{array}{c} \text{Measured from } V_{SVIN} \\ \text{to GND} \end{array}$		100		mV
Input Over Voltage Protection	V_{OVP}	V _{SVIN} rising and measured from V _{SVIN} to GND	5.8			V
Input Over Voltage Protection Hysteresis	$\Delta V_{ m OVP}$	$\begin{array}{c} \text{Measured from } V_{SVIN} \\ \text{to GND} \end{array}$		0.5		V
Quiescent Current			,		,	
Battery Discharge Current	I_{BAT}	Shutdown IC, EN=NTC=0			25	μΑ
Input Quiescent Current	I_{IN}	Disable Charge, EN=1,NTC=0			1.5	mA
Oscillator and PWM						
Switching Frequency	f_{SW}			1000		kHz
Main N-FET Minimum Off Time	t _{OFF_MIN}	With 18V rating		100		ns
Main N-FET Maximum Off Time	t _{OFF_MAX}	With 18V rating		30		μs
Main N-FET Minimum On Time	t _{ON_MIN}	With 18V rating		100		ns
Power MOSFET	•					
R _{DS(ON)} of Main N-FET	R _{NFET_M}			80		$m\Omega$
R _{DS(ON)} of Rectified N- FET	R _{NFET_R}			40		mΩ
R _{DS(ON)} of Blocking N- FET	R _{NFET_B}			40		mΩ
Voltage Regulation	•	<u>.</u>	•			
Rattary Chargo Voltago	$V_{\mathrm{BAT_REG}}$	V _{CV} <1V	8.32	8.40	8.48	V
Battery Charge Voltage		V _{CV} >2V	8.62	8.70	8.78	v
High Level Logic for CV	V_{CV_H}		2			V
Low Level Logic for CV	V _{CV_L}				1	V
Recharge Threshold Refer to VBAT_REG	ΔV_{RCH}		100	200	300	mV
Trickle Current Charge Mode Battery Voltage Threshold	V _{TRK}	Rising edge threshold	5.4	5.6	5.8	V
Battery Connect Detection						
NTC Voltage Threshold for Battery Detect	V_{DET}	NTC Falling Edge	85%		95%	V_{SVIN}
Detect Delay Time	$t_{ m DET}$		30	35	40	ms

Charge Current						
Internal Charge Current Accuracy		I -1000m A	-10		10	%
for Constant Current Mode		I _{CC} =1000mA	-10		10	%0
Internal Charge Current Accuracy		I 100 A	50		50	0/
for Trickle Current Mode		$I_{TC}=100\text{mA}$	-50		50	%
Termination Current	I _{TERM}	I _{CC} =1000mA	50	100	150	mA
Output Voltage OVP				•		
Output Voltage OVP Threshold	V _{OVP}		105%	110%	115%	V_{BAT_REG}
Input Current Limit		•	'		'	
		Float ILIM		250		
V _{SVIN} Drop for Slow CC REF	V_{DISS}	Pull low ILIM		375		mV
Discharge Voltage Threshold	DISS	Pull high ILIM		500		
Slow Discharge Voltage Hysteresis	ΔV_{DISS}	Positive edge		50		mV
	- Diss	Float ILIM		500		
V _{SVIN} Drop for Fast CC REF	V _{DISF}	Pull low ILIM		750		mV
Discharge Voltage Threshold	* DISF	Pull high ILIM		1000		111 7
Fast Discharge Voltage Hysteresis	ΔV_{DISF}	Positive edge		50	<u> </u>	mV
Timer	△ V DISF	1 Oshive edge		30		111 V
Trickle Current Charge Timeout	l +	I	0.425	0.5	0.57	5 hour
	t _{TC}	C_{TIM} =330nF	3.825		5.17	
Constant Current Charge Timeout	t _{CC}		3.823		5.17	
Charge Mode Change Delay Time	t _{MC}			30		ms
Termination Delay Time	T _{TERM}			30		ms
Recharge Time Delay	T_{RCHG}			30		ms
Short Circuit Protection						
Output Short Protection Threshold	V_{SHORT}		1.70	2.00	2.30) V
System ON/OFF Control						
High Logic of System ON/OFF	V _{SYSRT_H}		2.1			V
Control	▼ SYSRT_H		2.1			'
Low Logic of System ON/OFF	V _{SYSRT_L}				0.6	v
Control	STSKI_E					
Hysteresis for Positive and	V_{SYSRT_HYS}			100		mV
Negative Edge	5151115					
Linear Charger Mode	1	T				1
Battery Charger Current When the	I_{SC}	$V_{BAT} < V_{SHORT}$		5%		I_{CC}
Blocking FET is in Linear Mode	-30	BAT * SHORT				-cc
Peak Linear Current When Battery	I_{L_PEAK}			1		A
is Absent						
BD Voltage Regulation	V_{BD}	$V_{SHORT} < V_{BAT} < V_{TRK}$	5.8	6	6.2	V
Blocking FET Fully Turn On	V_{TRON}	$V_{BAT} > V_{TRK}$		100		mV
Threshold $V_{TRON} = V_{BAT} - V_{SVIN}$	· IKON	· BA1 · · IKK		100		
Enable ON/OFF Control	I	T				1
High Level Logic for Enable	$V_{\mathrm{EN_H}}$		1.5			V
Control	· EN_II					
Low Level Logic for Enable	$V_{\mathrm{EN_L}}$				0.4	V
Control	L1,_L					
Battery Thermal Protection NTC	Τ	T	1	1	1	. 1
Under Temperature Protection	V_{NTC_UTP}		75%	76%	77%	ó
Under Temperature Protection	Vyma	Falling edge	1 -	6%		V _{SVIN}
Hysteresis	V _{NTC_UTP_HYS}	I alling edge				
Over Temperature Protection	V_{NTC_OTP}		29.5%	30.5%	31.5	%

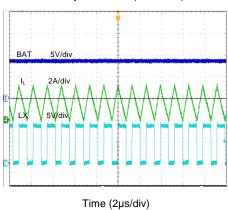

Over Temperature Protection Hysteresis	V _{NTC_OTP_HYS}	Rising edge		2%			
Thermal Fold-back and Thermal s	Thermal Fold-back and Thermal shutdown						
Thermal Fold-back Threshold	T_{Fold}	Rising edge		120		\mathcal{C}	
Thermal Fold-back Threshold Hysteresis	T_{Fold_HYS}			20		С	
Thermal Fold-back Ratio			(0.25		I_{CC}	
Thermal Shutdown Temperature	T_{SD}	Rising edge		160		\mathcal{C}	
Thermal Shutdown Temperature Hysteresis	T_{SD_HYS}			30		С	

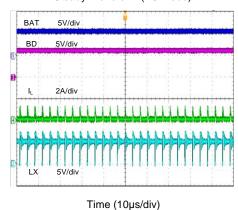

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

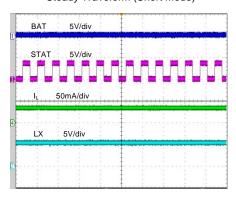

Note 3: The device is not guaranteed to function outside its operating conditions



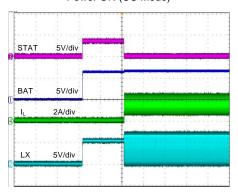
Typical Performance Characteristics $(T_A=25~\rm{C},~V_{IN}=5V,~L=0.68~\mu H,~R_{ICHG}=10k\Omega,~unless~otherwise~specified.)$



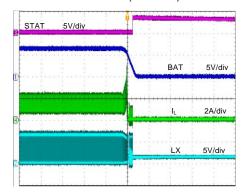




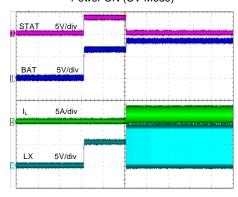
Steady Waveform (TC Mode)


Steady Waveform (Short Mode)

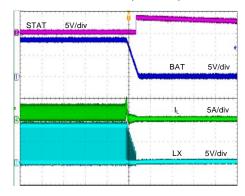
Time (1s/div)



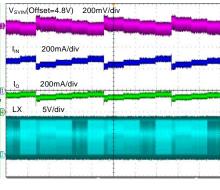
Power ON (CC Mode)


Time (400ms/div)

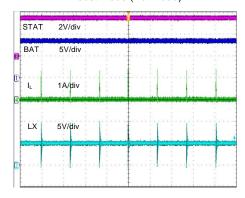
Power OFF (CC Mode)


Time (2ms/div)

Power ON (CV Mode)

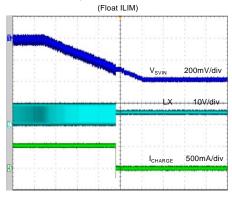

Time (400ms/div)

Power OFF (CV Mode)

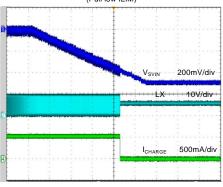

Time (4ms/div)

Adaptive Input Current Limit

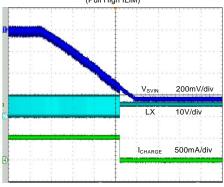
Time (4s/div)


Boost Mode (Null Load)

Time (20µs/div)



Different Input Current Limit Threshold


Time (4s/div)

Different Input Current Limit Threshold (Pull low ILIM)

Time (4s/div)

Different Input Current Limit Threshold (Pull High ILIM)

Time (4s/div)

General Function Description

SY6982C is a 3.0-5.5V_{IN}, 2A two-cell synchronous Boost Li-Ion battery charger integrates 1MHz switching frequency and full protection functions. The charge current up to 2A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneous. It also has a programmable charge timeout and adaptive input current limit for safety battery charge operation. SY6982C can disconnect output when there is output short circuit or shutdown happens. It consists of 18V rating FETs with extremely low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

Charging Status Indication Description

- Charge-in-process Pull and keep STAT pin to Low;
- 2. Charge Done Pull and keep STAT pin to High;
- **3.** Fault Mode Output high and low voltage alternatively with 1.3Hz frequency. Connect a LED from SVIN to STAT pin, LED ON means Charge-in-Process, LED OFF means Charge Done, LED Flashing with 1.3Hz means Fault Mode.

Fault Mode includes Input OVP, BAT OVP, BAT Short Circuit, NTC(UTP/OTP), Thermal Shutdown and Charge Timeout.

Switching Mode Boost Charger Basic Operation Description

Switching Mode Control Strategy

SY6982C is a switching mode Boost charger for the applications with USB power input. SY6982C utilizes quasi-fixed frequency constant OFF time control to simplify the internal close-loop compensation design. Slope compensation is not necessary for the stable operation. The quasi-fixed frequency settled at 1MHz is easy for the size minimization of peripheral circuit design. During the light load operation, when the output voltage of the internal error amplifier is lower than the minimum threshold, the OFF time is going to be stretched to achieve frequency fold back.

Operation Principle

SY6982C can normally work with or without Li-Ion battery both.

Battery Present

Before SY6982C start-up, C_{BD} is charged by the battery thru the body diode of blocking FET, and V_{BD}

equals to V_{BAT} .

If the plug in input voltage V_{SVIN} is higher than V_{BD}=V_{BAT}, C_{BD} is charged by V_{SVIN} further thru the body diode of sync-FET. Under this condition, the Boost charger operates in light load mode and regulates the V_{BD} at 6V and the blocking FET works in linear charge mode. If the V_{BAT} is lower than the internal short circuit threshold V_{SHORT}, the linear charge current is 1/20 $I_{\text{CC}}.$ When V_{BAT} is higher than V_{SHORT} but lower than the threshold of trickle charge, the linear charge current is 1/10 of I_{CC}. Note that, charging current would not be increased to I_{CC} when the block FET operates in linear mode. With the increasing of V_{BAT} , when V_{BAT} is higher than both V_{SVIN} and V_{TRK}, the blocking FET is fully turned on and the switching mode Boost charger takes over the battery charging. The current in the blocking FET is mirrored to be as the charging current I_{CHG}. If V_{SVIN} is lower than V_{BD}=V_{BAT} at the plug in time, the switching mode Boost charger starts work directly.

During the charging mode, constant (trickle) charging current loop is active firstly. When V_{BAT} equals to constant voltage threshold V_{CV} , constant voltage loop takes over and pulls down the charging current. When I_{CHG} is lower than the termination current threshold I_{TERM} , the main FET of Boost charger is turned off firstly. Sync-FET and blocking FETs are turned off together when the current is down to zero. Then, SY6982C is waiting for recharge mode.

Battery Absent

If there's no battery connection detected thru NTC pin, SY6982C operates as a normal switching mode Boost converter. When $V_{\rm SVIN}$ is higher than UVLO threshold, the blocking FET is softly turned on. After the blocking FET fully turn-on, switching mode Boost converter starts work. The internal current loop and voltage loop are active both.

Basic Protection Principle

SY6982C has fully battery charging protection. When the input over voltage protection, the output over voltage protection, the thermal protection or the timeout protection happens, the main FET of the Boost charger is turned off immediately. The sync-FET and the blocking FET are turned off later when the current is down to zero. When the $V_{\rm BAT}$ is lower than $V_{\rm SHORT}$, the short circuit protection happens. The main FET is turned off firstly. The block FET enters linear mode with 1/20 $I_{\rm CC}$ charging current. When $V_{\rm BAT}$ recovers back to be higher than $V_{\rm SHORT}$, the Boost charger restarts to work at light load and regulates $V_{\rm BD}$ at 6V. The linear charge current is

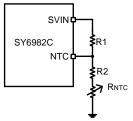
increased from 1/20 I_{CC} to 1/10 I_{CC} . When V_{BAT} recovers back to be higher than V_{TRK}, the Boost switching charger takes over.

Basic Adaptive Input Current Limit Principle

SY6982C has adaptive input current limit function. Before the IC starts charging work, the input voltage is detected and saved as reference V_{INREF}. Once IC starts to charge, the output charging current I_{CHG} is ramped up softly and the V_{SVIN} drop is monitored simultaneously. When the input voltage drop is larger than V_{DISS} the output charging current reference I_{CHGREF} starts to be discharged slowly and when the voltage drop is larger than V_{DISF} the I_{CHGREF} starts to be fast discharged. With the discharging of I_{CHGREF}, the charging current is deceased and the V_{SVIN} would recover. Once the V_{SVIN} goes back into the normal range, the I_{CHGREF} is kept on the current value. The I_{CHGREF} would be decreased along with the increasing of output voltage to keep the input power at the maximum value. The internal digital machine state is built up to achieve this function.

Constant Voltage Threshold Program Principle

SY6982C can program the constant voltage threshold thru the CV pin. When V_{CV} is higher than 2V, the constant voltage threshold is 8.7V; when V_{CV} is lower than 1V, the constant voltage threshold is 8.4V.


Applications Information

Because of the high integration of SY6982C, the application circuit based on this regulator IC is rather simple. Only input capacitor C_{IN}, output capacitor C_{OUT}, inductor L, NTC resistors R1, R2 and timer capacitor C_{TIM} need to be selected for the targeted applications specifications.

NTC Resistor

SY6982C monitors battery temperature by measuring the input voltage and NTC voltage. The controller triggers the UTP or OTP when the rate K (K= $V_{\text{NTC}}/V_{\text{SVIN}}$) reaches the threshold of UTP (KUT) or OTP (K_{OT}). The temperature sensing network is showed as below.

Choose R1 and R2 to program the proper UTP and OTP points.

The calculation steps are:

- 1. Define K_{UT} , $K_{UT} = 75 \sim 77\%$
- Define K_{OT} , $K_{OT} = 29.5 \sim 31.5\%$
- Assume the resistance of the battery NTC thermistor is R_{UT} at UTP threshold and R_{OT} at OTP threshold.
- 4. Calculate R2,

$$R2 = \frac{K_{\text{OT}}(1\text{-}K_{\text{UT}})R_{\text{UT}}\text{-}K_{\text{UT}}(1\text{-}K_{\text{OT}})R_{\text{OT}}}{K_{\text{UT}}\text{-}K_{\text{OT}}}$$

Calculate R1

 $R1=(1/K_{OT}-1)(R2+R_{OT})$

If choose the typical values $K_{UT} = 76\%$ and $K_{OT}=30.5\%$, then

R2=0.16Rut-1.16Rot R1=2.3(R2+Rot)

Timer Capacitor CTIM

The charger also provides a programmable charge The charge time is programmed by the capacitor connected between the TIM pin and GND. The capacitance is given by the formula:

 $C_{TIM}=2\times10^{-11} \text{ S}\times T_{CC}$

T_{CC} is the target constant charge time, unit: s.

Input Capacitor CIN

The ripple current through input capacitor is greater

$$I_{C_{IN}-RMS} = \frac{V_{IN} \times (V_{OUT}-V_{IN})}{2\sqrt{3} \times L \times F_{SW} \times V_{OUT}}$$

X5R or X7R ceramic capacitors with greater than 4.7 µF capacitance are recommended to handle this ripple current.

Output Capacitor Cout

The output capacitor is selected to handle the output ripple noise requirements. This ripple voltage is related to the capacitance and its equivalent series resistance (ESR). For the best performance, it is recommended to use X5R or a better grade low ESR ceramic capacitor. The voltage rating of the output capacitor should be higher than the maximum output voltage. The minimum required capacitance can be calculated as:

$$C_{\text{OUT}} = \frac{I_{\text{CC}} \times (V_{\text{OUT}} - V_{\text{IN}})}{F_{\text{SW}} \times V_{\text{OUT}} \times V_{\text{RIPPLE}}}$$

 V_{RIPPLE} is the peak to peak output ripple. I_{CC} is the setting charge current.

For SY6982C, output capacitor is paralleled by C_{BD} and $C_{BAT},$ for smaller output ripple noise, each capacitor with greater than $10\,\mu F$ capacitance is recommended.

Inductor L

There are several considerations in choosing this inductor.

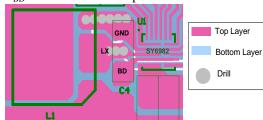
1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the average input current. The inductance is calculated as:

$$L = \left(\frac{V_{\text{IN}}}{V_{\text{OUT}}}\right)^2 \frac{(V_{\text{OUT}} - V_{\text{IN}})}{I_{\text{CC}} \times F_{\text{SW}} \times 40\%}$$

Where F_{SW} is the switching frequency and I_{CC} is the setting charge current.

The SY6982C is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

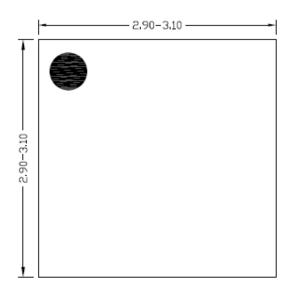
2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

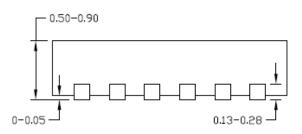

$$I_{SAT,MIN} > \left(\frac{V_{OUT}}{V_{IN}}\right) \!\! \times I_{CC} \! + \! \left(\frac{V_{IN}}{V_{OUT}}\right) \!\! \times \! \frac{(V_{OUT} - V_{IN})}{2 \! \times \! F_{SW} \! \times \! L}$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<10m Ω to achieve a good overall efficiency.

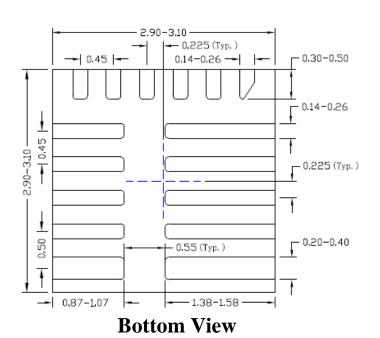
Layout Design

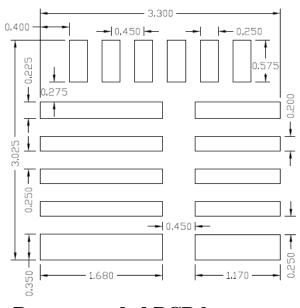
The layout design of SY6982C regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C_{SVIN} , L, C_{BD} .


1) The loop of main MOSFET, rectifier diode, and C_{BD} must be as short as possible



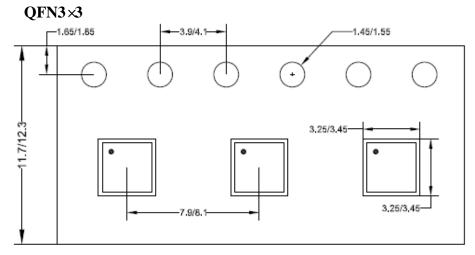
- 2) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance.
- 3) C_{SVIN} must be close to pin SVIN and GND.
- 4) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
- 5) The small signal component R_{ICHG} must be placed close to IC and must not be adjacent to the LX net on the PCB layout to avoid the noise problem.

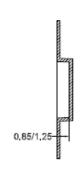

QFN3×3-16 Package Outline Drawing



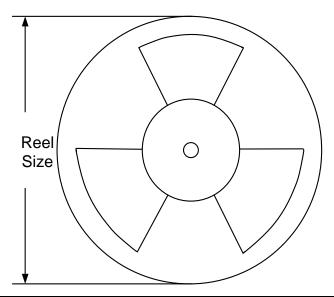
Top View

Side View


Recommended PCB layout (Reference only)


Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

Feeding direction ----

2. Carrier Tape & Reel specification for packages

Package type	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
QFN3×3	12	8	13"	400	400	5000

3. Others: NA

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2018 Silergy Corp.

All Rights Reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by Silergy manufacturer:

Other Similar products are found below:

NCP1851BFCCT1G NCP1855FCCT1G FAN54063UCX MP2615GQ-P LC05132C01NMTTTG ISL95522HRZ BD8665GW-E2

ISL95522AIRZ S-82D1AAE-A8T2U7 S-82D1AAA-A8T2U7 S-8224ABA-I8T1U MP2615CGQ-P ISL6251HRZ ISL6253HRZ ISL6292
2CR3 ISL6292BCRZ-T ISL6299AIRZ ISL9211AIRU58XZ-T ISL9214IRZ ISL9220IRTZ-T FAN54161UCX DW01-A/J DW01A 4056H

4056D TP4056 TP4054 TP4057 IP2326_NPD IP2709_BF20WP TP4057 TP4054 TP4056-MS TP4057-MS TP4054-MS SY6982CQDC

SLM6335 SLM6500S TP4057 DW01 AP5056HSPER EG4321 GN4054B HG4054M5/TR 4060 4061 4061H 4056A 4056V 4060H