

Application Note: AN_SY8745 High Efficiency, 10-60V Input, 500kHz White LED Driver Preliminary datasheet

General Description

SY8745 is a high efficiency, 10V-60V wide input voltage range DC/DC regulator targeting at LED applications. The device integrates the low $R_{DS(ON)}$ MOSFET and internal compensation. Along with the small SO8E package, the device achieves an extremely small solution size for LED driver design. SY8745 also supports PWM/Analog dimming function.

Ordering Information

Features

- Wide input range: 10-60 V
- 500kHz switching frequency
- Integrated low R_{DS(ON)} FET: 0.16Ω
- PWM/Analog dimming available
- 1.5A LED current output
- Compact package: SO8E

Applications

• LED lighting

Typical Applications

Pinout (top view)

Top Mark: AZTxyz (device code: AZT, x=year code, y=week code, z= lot number code)

Pin Name	SO8E	Pin Description
IN	5	Input pin. Decouple this pin to GND pin with 1uF ceramic
		cap. Also used as the positive current sense pin.
SEN	6	Negative Current Sense Pin.
GND	4 And Exposed	Ground pin
	Pad	
LX	3	Inductor node. Connect an induct r from power input to
		LX pin.
		Enable pin and PWM dimming input pin. If V _{EN} >8V, IC
EN	7	Work at 0^{-1} V linear dimining, dimining signal add to CF.
		$11 \text{ v}_{\text{EN}} > 6 \text{ v}$, IC work at it log uninning mode, connect a capacitor like 10nE to CE
		When analog dimming, connect a 10nE consister to CE to
		when analog uninning, connect a four capacitor to CF to
CF	2	filter the reference. Also, the PIN is used to judge dimming
		mode. When VCF>1.5V, IC work at PWM dimming mode,
		when VCF<1.5V, IC work at analog dimming mode.
NC	1,8	No connection

Absolute Maximum Ratings

LX, IN, EN	63V
SEN	$V_{IN} \pm 0.6V$
All other pins	4V
Power Dissipation, PD @ TA = 25°C SO8E,	3.3W
Package Thermal Resistance (Note 2)	
ΘJA	30°C/W
θ _{JC}	10°C/W
Junction Temperature Range	40°C to125°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C

Recommended Operating Conditions

IN, LX, EN	5V to $60V$
SEN	$V_{IN} \pm 0.4V$
All other pins	0-3.6V
Junction Temperature Range	40°C to 125°C
concercion i comberante i rande	

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V IN		10		60	V
Shutdown Current	I SHDN	EN=0		20	40	μΑ
Low Side Main FET RON	K DS(ON)			0.16		Ω
Switching Frequency	г SW			500		kHz
Current Sense Limit	V IN-SEN		98	100	202	mV
EN Rising Threshold	V ENH			1.0		V
EN Falling Threshold	V ENL			0.5		V
IN UVLO Rising Threshold	V IN,UVLO			9		v
UVLO Hysteresis	U VLO,HYS			1.0		V
Dimming section:						
Analog dimming range on	V	$I_{\text{LED}}=10\%$		100		mV
CF	CF	I _{LED} =100%		1.1		V
Thermal Shutdown Temperature	T SD			155		°C
Thermal Hysteresis	Hyst			25		°C

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 θ Note 2: JA is measured in the natural convection at T_A = 25°C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3. The device is not guaranteed to function outside ts operating conditions

Block Diagram

Typical Performance Characteristics

Time (200us/div)

Time (200us/div)

AN_SY8745

Time (40ms/div)

Time (40ms/div)

Time (40ms/div)

AN_SY8745

Operation

SY8745 is a grounding switch buck regulator IC that integrates the PWM control, power MOSFET on the same die to minimize the switching transition loss and conduction loss. With ultra low $R_{DS(ON)}$ power switches and proprietary PWM control, this regulator IC can achieve the high efficiency and Along with the small SO8E package, the device achieves an extremely small solution size for LED driver design. SY8745 also supports PWM/Analog dimming function.

Applications Information

Because of the high integration in the SY8745 IC, the application circuit based on this regulator IC is rather simple. Only input capacitor C_{IN} , output capacitor C_{OUT} , output inductor L and current sense resistor R_{SEN} need to be selected for the targeted applications specifications.

Current sense resistor RSEN:

Choose R_{SEN} to program the proper output Current: $\stackrel{~~}{\underset{I_{LED}(A)}{\overset{~~}}} \underbrace{0.1(V)}$

 $R_{SEN}(\Omega)$

Input capacitor Cin:

The ripple current through input capacitor is calculated as:

 $I_{CIN_RMS} = I_{OUT} \cdot \sqrt{D(1-D)}$

A typical X7R or better grade ceramic capacitor with suitable capacitance should be chosen to handle this ripple current well. To minimize the potent al noise problem, place this ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by C_{IN} , and IN/GND pins.

Output capacitor Cour:

The output capacitor is selected to handle the output current ripple noise equirements. For the best performance, it is rec mmended to use X7R or better grade ceramic capacitor greater than 1uF capacitance.

Output inductor L:

There are several considerations in choosing this inductor.

 Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum output current. The inductance is calculated as:

$$L = \frac{V_{\text{out}} (1 - V_{\text{out}} / V_{\text{inmax}})}{F_{\text{sw}} \times I_{\text{out,Max}} \times 40\%}$$

where Fsw is the switching frequency and $I_{\mbox{OUT},\mbox{MAX}}$ is the LED current.

The SY8745 regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

Isat, MIN > Iout, MAX +
$$\frac{V_{OUT} (1 - V_{OUT} / V_{IN}, MAX)}{2 \cdot F_{SW} \cdot L}$$

Dimming Operation:

Analog dimming:

1:0~1.0V linear dimming. Set V_{EN} >8V, and add 0~1V dimming signal to CF PIN.

2: Applied with PWM signal. Connect a capacitor to CF PIN to filler reference inte , and add PWM signal to EN PIN ($V_{EN HIGH} < 8V$)

3:PWM dimming. Set VCF>1.5V, and add PWM signal to EN PIN.

PWM	CF	Dimming mode
	>1.5	PWM dimming
PWM>8	<1.5	0~1.0V linear dimming on CF
PWM<8	<1.5	Analog dimming on PWM

At WM dimming mode, the minimum T_{PWM_ON} time is suggest setting bigger than 20 μ S.

Soft Start:

Add a ceramic capacitor C_{CF} on CF to achieve soft start, the soft start time can be adjusted by C_{CF} .

SCP:

If $V_{VIN}\mbox{-}V_{SEN}\mbox{=}0.2V, PWM$ is disabled, When VIN-VSEN=0.1V, IC will recover work.

EN OFF:

IC shut down after EN OFF with 10ms.

Layout Design:

The layout design of SY8745 regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C_{IN} , L, C_{OUT} , CF and R_{SEN} .

1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.

2) C_{IN} must be close to Pins IN and GND. The loop area formed by C_{IN} and GND must be minimized.

3) The PCB copper area associated with LX pin must

be minimized to avoid the potential noise problem.

PCB Layout Suggestion

Sconfidential

Notes:All dimension in MMAllCorpdimension don't not include mold flash & metal burr

Silergy

Taping & Reel Specification

1. SOP8-EP

2. Carrier Tape & Reel specification for packages

Package	Tape width	Pocket	Reel size	Reel	Trailer	Leader length	Qty per
types	(mm)	pitch(mm)	(Inch)	width(mm)	length(mm)	(mm)	reel
SOP8-EP	12	8	13''	12.4	400	400	2500

3. Others: NA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Display Drivers category:

Click to view products by Silergy manufacturer:

Other Similar products are found below :

STP16CPP05XTTR SCT2027CSSG KP22306WGA KP1199AWPA KP1199BWPA GN1628T BCT3236EGH-TR HT1628BRWZ KP1192SPA KP1182SPA KP1262FSPA KP1072LSPA KP1191SPA KP18001WPA KP1070LSPA KP1221SPA KP107ALSPA GN1640T MBI5253GP-A WS90561T S7P WS9821B S7P WS9032GS7P LYT3315D M08888G-11 M08890G-13 SCT2001ASIG SCT2024CSOG SCT2024CSSG AL8400QSE-7 PR4401 PR4403 PCA9685PW STP16CPC05XTTR WS2821B PR4402 M08898G-13 RT8471GJ5 TLC59482DBQR ISL97634IRT14Z-TK AW36413CSR LP5562TMX WS2818B BCR401R BCR401U BCR402U SCT2004CSOG SCT2026CSOG SCT2026CSSG SCT2932F SCT2932J