Si534

Quad Frequency Crystal Oscillator (XO) (10 MHz то 1.4 GHz)

Features

- Available with any-rate output frequencies from 10 MHz to 945 MHz and select frequencies to 1.4 GHz
- Four selectable output frequencies
- 3rd generation DSPLL ${ }^{\circledR}$ with superior jitter performance
- $3 x$ better frequency stability than SAW-based oscillators
- Internal fixed crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- 3.3, 2.5 , and 1.8 V supply options
- Industry-standard $5 \times 7 \mathrm{~mm}$ package and pinout
- Pb-free/RoHS-compliant

Applications

- SONET/SDH
- Networking
- SD/HD video

■ Test and measurement

- Clock and data recovery
- FPGA/ASIC clock generation

Description

The Si534 quad frequency XO utilizes Silicon Laboratories' advanced DSPLL ${ }^{\circledR}$ circuitry to provide a low jitter clock at high frequencies. The Si534 is available with any-rate output frequency from 10 to 945 MHz and select frequencies to 1400 MHz . Unlike a traditional XO where a different crystal is required for each output frequency, the Si534 uses one fixed crystal to provide a wide range of output frequencies. This IC based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides superior supply noise rejection, simplifying the task of generating low jitter clocks in noisy environments typically found in communication systems. The Si534 IC-based XO is factory configurable for a wide variety of user specifications including frequency, supply voltage, output format, and temperature stability. Specific configurations are factory programmed at time of shipment, thereby eliminating long lead times associated with custom oscillators.

Functional Block Diagram

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Supply Voltage ${ }^{1}$	$V_{D D}$	3.3 V option	2.97	3.3	3.63	V
		2.5 V option	2.25	2.5	2.75	
		1.8 V option	1.71	1.8	1.89	
Supply Current	$I_{\text {DD }}$	Output enabled				mA
		LVPECL	-	111	121	
		CML	-	99	108	
		LVDS	-	90	98	
		CMOS	-	81	88	
		Tristate mode	-	60	75	
Output Enable (OE) and Frequency Select FS[1:0] ${ }^{2}$		V_{IH}	$0.75 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
		$\mathrm{V}_{\text {IL }}$	-	-	0.5	
Operating Temperature Range	$\mathrm{T}_{\text {A }}$		-40	-	85	${ }^{\circ} \mathrm{C}$
Notes:						

Table 2. CLK \pm Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Nominal Frequency ${ }^{1,2}$	f_{0}	LVPECL/LVDS/CML	10	-	945	MHz
		CMOS	10	-	160	
Initial Accuracy	f_{i}	Measured at $+25^{\circ} \mathrm{C}$ at time of shipping	-	± 1.5	-	ppm
Temperature Stability ${ }^{1,3}$			$\begin{aligned} & -7 \\ & -20 \\ & -50 \end{aligned}$	-	$\begin{gathered} +7 \\ +20 \\ +50 \end{gathered}$	ppm
Aging	f_{a}	Frequency drift over first year	-	-	± 3	ppm
		Frequency drift over 15 year life	-	-	± 10	ppm
Total Stability		Temp stability $= \pm 7 \mathrm{ppm}$	-	-	± 20	ppm
		Temp stability $= \pm 20 \mathrm{ppm}$	-	-	± 31.5	ppm
		Temp stability $= \pm 50 \mathrm{ppm}$	-	-	± 61.5	ppm

Notes:

1. See Section 3. "Ordering Information" on page 7 for further details.
2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz .
3. Selectable parameter specified by part number.
4. Time from powerup or tristate mode to f_{O}.

Table 2. CLK \pm Output Frequency Characteristics (Continued)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Powerup Time ${ }^{4}$	$\mathrm{t}_{\mathrm{OSC}}$		-	-	10	ms
Settling Time After FS[1:0] Change	$\mathrm{t}_{\text {FRQ }}$	Both FS[1] and FS[0] changing simultaneously	-	-	20	ms

Notes:

1. See Section 3. "Ordering Information" on page 7 for further details.
2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz .
3. Selectable parameter specified by part number.
4. Time from powerup or tristate mode to f_{O}.

Table 3. CLK \pm Output Levels and Symmetry

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
LVPECL Output Option ${ }^{1}$	V_{O}	mid-level	$\mathrm{V}_{\mathrm{DD}}-1.42$	-	$\mathrm{V}_{\mathrm{DD}}-1.25$	V
	$V_{O D}$	swing (diff)	1.1	-	1.9	$V_{P P}$
	$\mathrm{V}_{\text {SE }}$	swing (single-ended)	0.55	-	0.95	V_{PP}
LVDS Output Option ${ }^{2}$	V_{O}	mid-level	1.125	1.20	1.275	V
	$V_{O D}$	swing (diff)	0.5	0.7	0.9	$V_{\text {PP }}$
CML Output Option ${ }^{2}$	V_{O}	mid-level	-	$\mathrm{V}_{\mathrm{DD}}-0.75$	-	V
	V_{OD}	swing (diff)	0.70	0.95	1.20	$V_{P P}$
CMOS Output Option ${ }^{3}$	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=32 \mathrm{~mA}$	$0.8 \times \mathrm{V}_{\mathrm{DD}}$	-	V_{DD}	V
	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$	-	-	0.4	
Rise/Fall time (20/80\%)	$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	LVPECL/LVDS/CML	-	-	350	ps
		CMOS with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	1	-	ns
Symmetry (duty cycle)	SYM	LVPECL: $\mathrm{V}_{\mathrm{DD}}-1.3 \mathrm{~V}$ (diff) LVDS: 1.25 V (diff) CMOS: $\mathrm{V}_{\mathrm{DD}} / 2$	45	-	55	\%

Notes:

1. 50Ω to $V_{D D}-2.0 \mathrm{~V}$.
2. $R_{\text {term }}=100 \Omega$ (differential).
3. $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

Table 4. CLK \pm Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Phase Jitter (RMS)* for $\mathrm{F}_{\text {OUT }} \geq 500 \mathrm{MHz}$	ϕ_{J}	12 kHz to 20 MHz (OC-48)	-	0.25	0.40	ps
		50 kHz to 80 MHz (OC-192)	-	0.26	0.37	
Phase Jitter (RMS)* for $\mathrm{F}_{\text {OUT }}$ of 125 to 500 MHz	ϕ_{J}	12 kHz to 20 MHz (OC-48)	-	0.36	0.50	ps
		50 kHz to 20 MHz (OC-192)	-	0.34	0.42	

*Note: Differential Modes: LVPECL/LVDS/CML. Refer to AN256 for further information.

Table 5. CLK \pm Output Period Jitter

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Period Jitter*	$J_{\text {PER }}$	RMS	-	2	-	ps
		Peak-to-Peak	-	14	-	

*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.

Table 6. CLK \pm Output Phase Noise (Typical)

Offset Frequency (f)	$\mathbf{1 2 0 . 0 0} \mathbf{~ M H z}$ LVDS	$\mathbf{1 5 6 . 2 5 ~ M H z}$ LVPECL	$\mathbf{6 2 2 . 0 8} \mathbf{~ M H z}$ LVPECL	Units
100 Hz	-112	-105	-97	
1 kHz	-122	-122	-107	
10 kHz	-132	-128	-116	
100 kHz	-137	-135	-121	$\mathrm{dBc} / \mathrm{Hz}$
1 MHz	-144	-144	-134	
10 MHz	-150	-147	-146	
100 MHz	n / a	n / a	-148	

Table 7. Absolute Maximum Ratings ${ }^{1}$

Parameter	Symbol	Rating	Units
Maximum Operating Temperature	$\mathrm{T}_{\text {AMAX }}$	85	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{DD}	-0.5 to +3.8	Volts
Input Voltage (any input pin)	V_{I}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	Volts
Storage Temperature	T_{S}	-55 to +125	${ }^{\circ} \mathrm{C}$
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2500	Volts
Soldering Temperature (Pb-free profile) ${ }^{2}$	$\mathrm{~T}_{\text {PEAK }}$	260	${ }^{\circ} \mathrm{C}$
Soldering Temperature Time @ $\mathrm{T}_{\text {PEAK }}(\mathrm{Pb}-\text { free profile })^{2}$	t_{P}	$20-40$	seconds

Notes:

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.
2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at www.silabs.com/VCXO for further information, including soldering profiles.

Table 8. Environmental Compliance
The Si534 meets the following qualification test requirements.

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002.3 B
Mechanical Vibration	MIL-STD-883F, Method 2007.3 A
Solderability	MIL-STD-883F, Method 203.8
Gross \& Fine Leak	MIL-STD-883F, Method 1014.7
Resistance to Solvents	MIL-STD-883F, Method 2016

2. Pin Descriptions

(Top View)

Table 9. Pin Descriptions

Pin	Symbol	LVDS/LVPECL/CML Function	CMOS Function
1	NC	No connection	No connection
2	OE* *	Output enable = clock output disabled (outputs tristated) $1=$ clock output enabled	Output enable a clock output disabled (outputs tristated) = clock output enabled
3	GND	Electrical and Case Ground	Electrical and Case Ground
4	CLK+	Oscillator Output	Oscillator Output
5	CLK-	Complementary Output	No connection
6	$\mathrm{~V}_{\text {DD }}$	Power Supply Voltage	Power Supply Voltage
7	FS[1]*	Frequency Select MSB	Frequency Select MSB
8	FS[0]*	Frequency Select LSB	Frequency Select LSB

*Note: FS[1:0] and OE include a $17 \mathrm{k} \Omega$ pullup resistor to V_{DD}. See Section 3. "Ordering Information" on page 7 for details on frequency value ordering.

3. Ordering Information

The Si534 XO supports a variety of options including frequency, temperature stability, output format, and V_{DD}. Specific device configurations are programmed into the Si534 at time of shipment. Configurations can be specified using the Part Number Configuration chart below. Silicon Laboratories provides a web browser-based part number configuration utility to simplify this process. Refer to www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si534 is supplied in an industry-standard, RoHS compliant, 6-pad, $5 \times 7 \mathrm{~mm}$ package.

Example Part Number: 534AB000108DGR is a $5 \times 7 \mathrm{~mm}$ quad XO in a 8 pad package. Since the six digit code (000108) is >000100, $\mathrm{f0}$ is 644.53125 MHz (lower frequency) and f 1 is 693.48299 (higher frequency), with a 3.3 V supply, LVPECL output, and Output Enable active high polarity. Temperature stability is specified as $\pm 20 \mathrm{ppm}$. The part is specified for a -40 to $+85 \mathrm{C}^{\circ}$ ambient temperature range operation and is shipped in tape and reel format.

Figure 1. Part Number Convention

Si534

4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si 534 . Table 10 lists the values for the dimensions shown in the illustration.

Figure 2. Si534 Outline Diagram
Table 10. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max
A	1.45	1.65	1.85
b	1.2	1.4	1.6
c	0.60 TYP		
d	0.97	1.17	1.37
D	7.00 BSC		
D1	6.10	6.2	6.30
e	2.54 BSC		
E	5.00 BSC		
E1	4.30	4.40	4.50
L	1.07	1.27	1.47
M	0.8	1.0	1.2
S	1.815 BSC		
R	0.7 REF		
aaa	-	-	0.15
bbb	-	-	0.15
ccc	-	-	0.10
ddd	-	-	0.10

5. Si534 Mark Specification

Figure 3 illustrates the mark specification for the Si 534 . Table 11 lists the line information.

Figure 3. Mark Specification
Table 11. Si53x Top Mark Description

Line	Position	Description
1	$1-10$	"SiLabs"+ Part Family Number, 5xx (First 3 characters in part number)
2	$1-10$	Si530, Si531: Option1 + Option2 + Freq(7) + Temp Si532, Si533, Si534, Si530/Si531 w/ 8-digit resolution: Option1 + Option2 + ConfigNum(6) + Temp
3	Trace Code	
	Position 1	Pin 1 orientation mark (dot)
	Position 2	Product Revision (D)
	Position 3-6	Tiny Trace Code (4 alphanumeric characters per assembly release instructions)
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)
	Position 8-9	Calendar Work Week number (1-53), to be assigned by assembly site
	Position 10	"+" to indicate Pb-Free and RoHS-compliant

6. 8-Pin PCB Land Pattern

Figure 4 illustrates the 8-pin PCB land pattern for the Si554. Table 12 lists the values for the dimensions shown in the illustration.

Figure 4. Si534 PCB Land Pattern
Table 12. PCB Land Pattern Dimensions (mm)

Dimension	Min	Max
D2	5.08 REF	
D3	5.705 REF	
e	2.54 BSC	
E2	4.20 REF	
GD	0.84	-
GE	2.00	-
VD	8.20 REF	
VE	7.30 REF	
X1	1.70 TYP	
X2	1.545 TYP	
Y1	2.15 REF	
Y2	1.3 REF	
ZD	-	6.78
ZE	-	6.30

Note:

1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.
2. Land pattern design follows IPC-7351 guidelines.
3. All dimensions shown are at maximum material condition (MMC).
4. Controlling dimension is in millimeters (mm).

Document Change List

Revision 0.4 to Revision 0.5

- Updated Table 1, "Recommended Operating Conditions," on page 2.
- Added maximum supply current specifications.
- Specified relationship between temperature at startup and operation temperature.
- Updated Table 4, "CLK \pm Output Phase Jitter," on page 4 to include maximum rms jitter generation specifications and updated typical rms jitter specifications.
- Added Output Enable active polarity as an option in Figure 1, "Part Number Convention," on page 7.

Revision 0.5 to Revision 1.0

- Updated Note 3 in Table 1, "Recommended Operating Conditions," on page 2.
- Updated Figure 1, "Part Number Convention," on page 7.

Revision 1.0 to Revision 1.1

- Updated Table 1, "Recommended Operating Conditions," on page 2.
- Device maintains stable operation over -40 to $+85^{\circ} \mathrm{C}$ operating temperature range.
- Supply current specifications updated for revision D.
- Updated Table 2, "CLK \pm Output Frequency Characteristics," on page 2.
- Added specification for $\pm 20 \mathrm{ppm}$ lifetime stability ($\pm 7 \mathrm{ppm}$ temperature stability) XO.
- Updated Table 3, "CLK \pm Output Levels and Symmetry," on page 3.
- Updated LVDS differential peak-peak swing specifications.
- Updated Table 4, "CLK \pm Output Phase Jitter," on page 4.
■ Updated Table 5, "CLK \pm Output Period Jitter," on page 4.
- Revised period jitter specifications.
- Updated Table 7, "Absolute Maximum Ratings ${ }^{1}$," on page 5 to reflect the soldering temperature time at $260^{\circ} \mathrm{C}$ is $20-40 \mathrm{sec}$ per JEDEC J-STD-020C.
- Updated 3. "Ordering Information" on page 7.
- Changed ordering instructions to revision D.

■ Added 5. "Si534 Mark Specification" on page 9.

Contact Information

Silicon Laboratories Inc.

400 West Cesar Chavez

Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: VCXOinfo@silabs.com
Internet: www.silabs.com

> The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard Clock Oscillators category:
Click to view products by Silicon Labs manufacturer:
Other Similar products are found below :
EP1400SJTSC-125.000M 601137 601252 CSX750FBC-24.000M-UT CSX750FBC-33.333M-UT CSX750FCC-3.6864M-UT F335-12 F33525 F535L-50 DSC506-03FM2 ASA-20.000MHZ-L-T ASA-25.000MHZ-L-T ASA-27.000MHZ-L-T ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C-66.6666MHZ NBXDBB017LN1TAG NBXHBA019LN1TAG SiT1602BI-22-33E50.000000E SIT8003AC-11-33S-2.04800X SiT8256AC-23-33E-156.250000X SIT8918AA-11-33S-50.000000G SM4420TEV-40.0M-T1K SMA4306-TL-H F335-24 F335-40 F335-50 F535L-10 F535L-12 F535L-16 F535L-24 F535L-27 F535L-48 CSX750FBC-20.000M-UT CSX-750FBC33333000T CSX750FBC-4.000M-UT CSX750FBC-7.3728M-UT CSX750FBC-8.000M-UT CSX-750FCC14745600T CSX750FCC-16.000M-UT CSX-750FCC40000000T CSX750FCC-4.000M-UT ASA-22.000MHZ-L-T ASA2-26.000MHZ-L-T ASA-40.000MHZ-L-T ASA-48.000MHZ-L-T ASA-60.000MHZ-L-T ASF1-3.686MHZ-N-K-S XLH735025.000JU4I8

