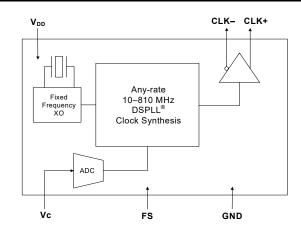
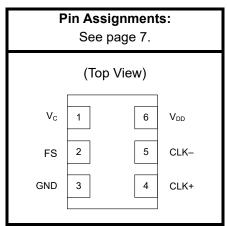


DUAL-FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHz

Features

- Available with any-rate output frequencies from 10 to 810 MHz
- 3rd generation DSPLL® with superior litter performance
- Internal fixed fundamental mode crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- Two selectable output frequencies 3.3, 2.5, and 1.8 V supply options
 - Industry standard 5x7 and 3.2x5 mm packages
 - Pb-free/RoHS-compliant
 - -40 to +85 °C operating range


Applications


- SONET/SDH (OC-3/12/48) ■
- Networking
- SD/HD SDI/3G SDI video
- FTTx
- Clock recovery and jitter cleanup PLLs
- FPGA/ASIC clock generation

Description

The Si596 dual-frequency VCXO utilizes Skyworks Solutions' advanced DSPLL® circuitry to provide a low-jitter clock at high frequencies. The Si596 is available with any-rate output frequency from 10 to 810 MHz. Unlike traditional VCXOs, where a different crystal is required for each output frequency, the Si596 uses one fixed crystal to provide a wide range of output frequencies. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments. The Si596 IC-based VCXO is factory-configurable for a wide variety of user specifications including frequency, supply voltage, output format, tuning slope, and absolute pull range (APR). Specific configurations are factory programmed at time of shipment, thereby eliminating the long lead times associated with custom oscillators.

Functional Block Diagram

Si596

TABLE OF CONTENTS

ection	Page	ļ
Electrical Specifications		3
Pin Descriptions		8
Ordering Information		9
Package Outline Diagram: 5 x 7 mm, 6-pin	10	0
PCB Land Pattern: 5 x 7 mm, 6-pin	1	1
Package Outline Drawing: 3.2 x 5 mm, 6-pin		
PCB Land Pattern: 3.2 x 5 mm, 6-pin		
Si596 Top Marking: 5x7 mm		
Si596 Top Marking: 3.2x5 mm		
evision History		

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage ¹	V _{DD}	3.3 V option	2.97	3.3	3.63	
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	
Supply Current	I _{DD}	LVPECL	_	120	135	
		CML		110	120	m ∧
		LVDS		100	110	mA
		CMOS	_	90	100	
Frequency Select (FS) ²		V _{IH}	0.75 x V _{DD}	_	_	V
		V_{IL}	_	_	0.5]
Operating Temperature Range	T _A		-40	_	85	°C

Notes:

- 1. Selectable parameter specified by part number. See 3. "Ordering Information" on page 8 for further details.
- 2. FS pin includes an internal 17 k Ω pullup resistor to V_{DD}. When the FS is left floating, the pullup causes FS = 1 = second frequency selected.

Table 2. V_C Control Voltage Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Control Voltage Tuning Slope ^{1,2,3}	K _V	10 to 90% of V _{DD}	_	45	_	ppm/V
				95		
				125		
				185		
				380		
Control Voltage Linearity ⁴	L _{VC}	BSL	-5	±1	+5	- %
		Incremental	-10	±5	+10	70
Modulation Bandwidth	BW		9.3	10.0	10.7	kHz
V _C Input Impedance	Z _{VC}		500	_		kΩ
V _C Input Capacitance	C _{VC}		_	50		pF
Nominal Control Voltage	V _{CNOM}	@ f _O	_	V _{DD} /2		V
Control Voltage Tuning Range	V _C		0		V_{DD}	V

- 1. Positive slope; selectable option by part number. See 3. "Ordering Information" on page 8.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- 3. K_V variation is $\pm 10\%$ of typical values.
- **4.** BSL determined from deviation from best straight line fit with V_C ranging from 10 to 90% of V_{DD} . Incremental slope determined with V_C ranging from 10 to 90% of V_{DD} .

Table 3. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency ^{1,2,3}	f _O	LVDS/CML/LVPECL	10	_	810	MHz
		CMOS	10	_	160	IVIIIZ
Temperature Stability ^{1,4}		T _A = -40 to +85 °C	-20	_	+20	nnm
			-50	_	+50	ppm
Absolute Pull Range ^{1,4}	APR		±10	_	±370	ppm
Power up Time ⁵	tosc		_	_	10	ms
Settling Time After FS Change	T _{FRQ}		_	_	10	ms

Notes:

- 1. See Section 3. "Ordering Information" on page 8 for further details.
- 2. Specified at time of order by part number.
- 3. Nominal output frequency set by $V_{CNOM} = V_{DD}/2$.
- 4. Selectable parameter specified by part number.
- 5. Time from power up or tristate mode to f_O.

Table 4. CLK± Output Levels and Symmetry

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
LVPECL Output Option ¹	Vo	mid-level	V _{DD} – 1.42	_	V _{DD} – 1.25	V
	V _{OD}	swing (diff)	1.1	_	1.9	V_{PP}
	V _{SE}	swing (single-ended)	0.55	_	0.95	V_{PP}
LVDS Output Option ²	V _O	mid-level	1.125	1.20	1.275	V
	V _{OD}	swing (diff)	0.5	0.7	0.9	V_{PP}
	Vo	2.5/3.3 V option mid-level	_	V _{DD} – 1.30	_	V
CMI Output Option2	VO	1.8 V option mid-level	_	V _{DD} – 0.36	_	V
CML Output Option ²	V _{OD}	2.5/3.3 V option swing (diff)	1.10	1.50	1.90	V_{PP}
	VOD	1.8 V option swing (diff)	0.35	0.425	0.50	v PP
CMOS Output Option ³	V _{OH}		0.8 x V _{DD}	_	V_{DD}	V
	V _{OL}		_	_	0.4	V
Rise/Fall time (20/80%)	t _{R,} t _F	LVPECL/LVDS/CML	_	_	350	ps
		CMOS with C _L = 15 pF	_	2	_	ns
Symmetry (duty cycle)	SYM		45	_	55	%

- **1.** 50 Ω to V_{DD} 2.0 V.
- **2.** $R_{term} = 100 \Omega$ (differential).
- 3. $C_L = 15$ pF. Sinking or sourcing 12 mA for $V_{DD} = 3.3$ V, 6 mA for $V_{DD} = 2.5$ V, 3 mA for $V_{DD} = 1.8$ V.

Table 5. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ^{1,2} for F _{OUT} of 50 MHz ≤ F _{OUT}	фл	Kv = 45 ppm/V 12 kHz to 20 MHz	_	0.5	_	ps
810 MHz		Kv = 95 ppm/V 12 kHz to 20 MHz	_	0.5	_	
		Kv = 125 ppm/V 12 kHz to 20 MHz		0.5	_	
		Kv = 185 ppm/V 12 kHz to 20 MHz		0.5	_	
		Kv = 380 ppm/V 12 kHz to 20 MHz		0.7		

- 1. Refer to AN256 for further information.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.

Table 6. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Period Jitter*	J _{PER}	RMS	_	3	_	ps	
		Peak-to-Peak	_	35	_		
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.							

Table 7. CLK± Output Phase Noise (Typical)

Offset Frequency	74.25 MHz 185 ppm/V LVPECL	148.5 MHz 185 ppm/V LVPECL	155.52 MHz 95 ppm/V LVPECL	Units
100 Hz	–77	-68	–77	
1 kHz	-101	-95	-101	
10 kHz	-121	–116	–119	
100 kHz	-134	-128	–127	dBc/Hz
1 MHz	-149	-144	-144	
10 MHz	–151	-147	-147	
20 MHz	–150	-148	-148	

Table 8. Environmental Compliance and Package Information

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross and Fine Leak	MIL-STD-883, Method 1014
Resistance to Solder Heat	MIL-STD-883, Method 2036
Contact Pads	Gold over Nickel

Table 9. Thermal Characteristics

(Typical values TA = 25 °C, V_{DD} = 3.3 V)

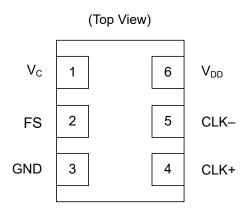
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
5x7mm, Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still Air	_	84.6		°C/W
5x7mm, Thermal Resistance Junction to Case	θЈС	Still Air		38.8		°C/W
3.2x5mm, Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still Air	_	31.1	_	°C/W
3.2x5mm, Thermal Resistance Junction to Case	θ JC	Still Air	_	13.3	_	°C/W
Ambient Temperature	T _A		-40	_	85	°C
Junction Temperature	TJ		_	_	125	°C

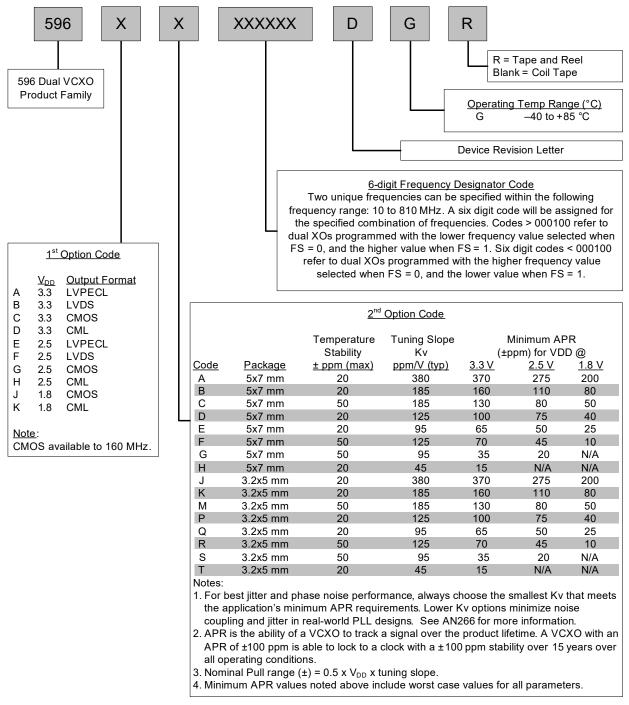
Table 10. Absolute Maximum Ratings¹

Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	°C
Supply Voltage	V_{DD}	-0.5 to +3.8	V
Input Voltage	V _I	-0.5 to V _{DD} + 0.3	
Storage Temperature	T _S	-55 to +125	°C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2500	V
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	°C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available at https://www.skyworksinc.com/Product_Certificate.aspx for further information, including soldering profiles.

2. Pin Descriptions




Table 11. Si596 Pin Descriptions

Pin	Name	Туре	Function
1	V _C	Analog Input	Control Voltage
2	Frequency Select: 0 = first frequency selected 1 = second frequency selected		0 = first frequency selected
3	GND	Ground	Electrical and Case Ground
4	CLK+	Output	Oscillator Output
5	CLK- (N/C for CMOS)	Output	Complementary Output (N/C for CMOS, do not make external connection)
6	V_{DD}	Power	Power Supply Voltage

*Note: FS pin includes a 17 k Ω resistor to V_{DD}. When the FS is left floating, the pullup causes FS = 1 = second frequency selected. See 3. "Ordering Information" on page 8 for details on frequency select ordering options.

3. Ordering Information

The Si596 supports a variety of options including frequency, temperature stability, tuning slope, output format, and V_{DD} . Specific device configurations are programmed into the Si596 at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Skyworks Solutions provides a web browser-based part number configuration utility to simplify this process. To access this tool refer to https://www.skywork-sinc.com/en/Application-Pages/Timing-Lookup-Customize. The Si596 VCXO series is supplied in industry-standard, RoHS compliant, lead-free, 6-pad, 5 x 7 mm and 3.2 x 5 mm packages. Tape and reel packaging is an ordering option.

Figure 1. Part Number Convention

4. Package Outline Diagram: 5 x 7 mm, 6-pin

Figure 2 illustrates the package details for the 5 x 7 mm Si596. Table 12 lists the values for the dimensions shown in the illustration.

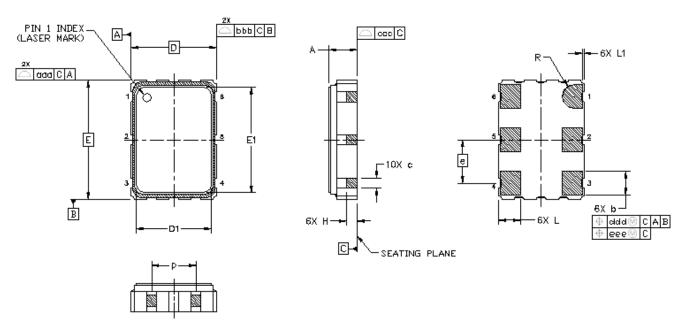


Figure 2. Si596 Outline Diagram

Table 12. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max
А	1.50	1.65	1.80
b	1.30	1.40	1.50
С	0.50	0.60	0.70
D	5.00 BSC		
D1	4.30	4.40	4.50
е	2.54 BSC.		
Е	7.00 BSC.		
E1	6.10	6.20	6.30
Н	0.55	0.65	0.75
L	1.17	1.27	1.37
L1	0.05	0.10	0.15
р	1.80	_	2.60
R	0.70 REF		
aaa	0.15		
bbb	0.15		
ccc	0.10		
ddd	0.10		
eee	0.05		

5. PCB Land Pattern: 5 x 7 mm, 6-pin

Figure 3 illustrates the 6-pin PCB land pattern for the 5 x 7 mm Si596. Table 13 lists the values for the dimensions shown in the illustration.

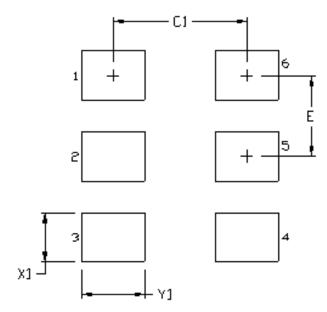


Figure 3. Si596 PCB Land Pattern

Table 13. PCB Land Pattern Dimensions (mm)

Dimension	(mm)
C1	4.20
E	2.54
X1	1.55
Y1	1.95

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.

Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1.

Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6. Package Outline Drawing: 3.2 x 5 mm, 6-pin

Figure 4 illustrates the package details for the 3.2×5 mm Si596. Table 14 lists the values for the dimensions shown in the illustration.

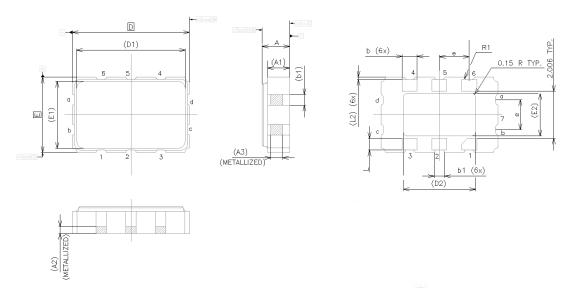


Figure 4. Si596 Outline Diagram

Table 14. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max	Dimension	Min	Nom	Max
А	1.02	1.17	1.32	E1	2.85 BSC		
A1	0.99	1.10	1.21	E2	1.91 BSC		
A2	0.5 BSC		L	0.35	0.45	0.55	
A3	0.30 BSC		L2	0.05	0.10	0.15	
b	0.54	0.64	0.74	R1	0.10 REF		
B1	0.35	0.45	0.55	aaa	0.15		
D	5.00 BSC		bbb	0.15			
D1	4.65 BSC		CCC	0.08			
D2	3.38 BSC		ddd	0.10			
е	1.27 BSC		eee	0.05			
E		3.20 BSC				_	•

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- **2.** Dimensioning and Tolerancing per ANSI Y14.5M-1994.

7. PCB Land Pattern: 3.2 x 5 mm, 6-pin

Figure 5 illustrates the 6-pin PCB land pattern for the 3.2 x 5 mm Si596. Table 15 lists the values for the dimensions shown in the illustration.

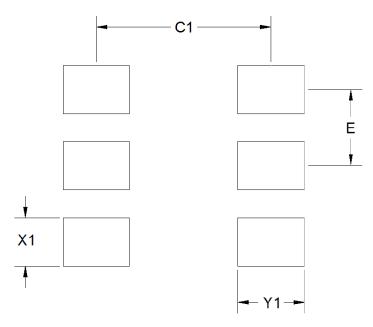


Figure 5. Si596 PCB Land Pattern

Table 15. PCB Land Pattern Dimensions (mm)

Dimension	(mm)
C1	2.91
E	1.27
X1	0.80
Y1	1.10

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1.

Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8. Si596 Top Marking: 5x7 mm

Figure 6 illustrates the mark specification for the 5x7 Si596. Table 16 lists the line information.

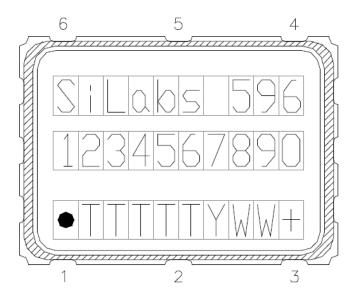


Figure 6. Mark Specification

Table 16. Si596 Top Mark Description

Line	Position	Description		
1	1–10	"SiLabs"+ Part Family Number, 596 (First 3 characters in part number)		
2	1–10	Si596: Option1+Option2+Freq(6)+Temp		
3	Trace Code			
	Position 1	Pin 1 orientation mark (dot)		
	Position 2	Product Revision (D)		
	Position 3–6	Tiny Trace Code (4 alphanumeric characters per assembly release instructions)		
	Position 7 Year (least significant year digit), to be assigned by assembly site (ex: 2009)			
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site		
	Position 10	"+" to indicate Pb-Free and RoHS-compliant		

9. Si596 Top Marking: 3.2x5 mm

Figure 7 illustrates the mark specification for the 3.2x5 mm Si596. Table 17 lists the line information.

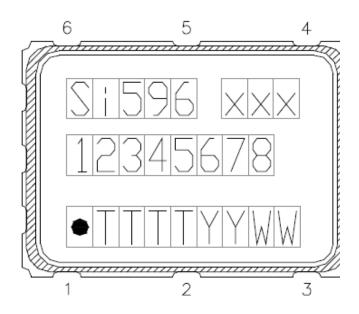


Figure 7. Mark Specification

Table 17. Si596 Top Mark Description

Line	Position	Description	
1	1–5	"Si"+ Part Family Number, 596 (First 3 characters in part number)	
	6-8	Crystal trace code (3 alphanumeric characters assigned by assembly site)	
2	1–8	Si596: Option1+Option2+Freq(6)	
3	Trace Code		
	Position 1	Pin 1 orientation mark (dot)	
	Position 2	Product Revision (D)	
	Position 3–5	Tiny Trace Code (3 alphanumeric characters per assembly release instructions)	
	Position 6-7	Year (last two digits of year), to be assigned by assembly site (ex: 2017 = 17)	
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site	

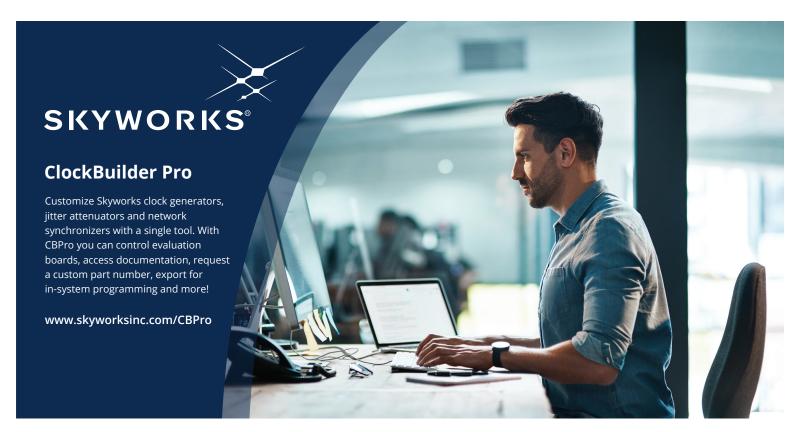
REVISION HISTORY

Revision 1.2

June, 2018

■ Changed "Trays" to "Coil Tape" in 3. "Ordering Information" on page 8.

Revision 1.1


December, 2017

■ Added 3.2 x 5 mm package.

Revision 1.0

June, 2016

■ Initial release.

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for VCXO Oscillators category:

Click to view products by Silicon Labs manufacturer:

Other Similar products are found below:

3808AI-DF-33NG-80.0000 SIT3808AI-CF-33EM-50.000000X 603281 YNETHE125 FRSONT019 SiT3701AC-43-33C-10.00000X 315LB311250T CVSS-945-125.000 VX-501-0245-160M0 CVHD-950-122.880 CVHD-950-80.000 CVHD-950X-100.000 CVPD-920-100.000 ASG-P-V-A-1.000GHZ ECXV-P37C2M-640.000 CVHD-957-22.57920 ECXV-P37C2N-155.520 ECXV-P37C2N-56.000 ECXV-P37C2N-184.320 ECXV-P37C2N-155.000 ECXV-P35C2N-155.520 LFVCXO067515Bulk ASG-D-V-A-1.000GHZ ASG-D-V-A-491.520MHz CVHD-950-74.25 CVPD-920-74.25 ABLNO-V-92.160MHZ ABLNO-V-120.000MHZ ABLNO-V-80.000MHZ ABLJO-V-100.000MHz ABLJO-V-155.520MHZ ABLJO-V-200.000MHz ABLJO-V-100.000MHz ABLJO-V-155.520MHZ ABLJO-V-100.000MHz ABLJO-V-100.000MHz ABLJO-V-100.000MHz-T2 ABLNO-V-120.000MHz-T2 ABLNO-V-125.000MHz ABLNO-V-155.520MHZ ABLNO-V-96.000MHz-T2 ABLNO-V-104.000MHZ ABLNO-V-125.000MHZ ABLNO-V-155.520MHZ ABLNO-V-96.000MHZ-T2 ABLNO-V-104.000MHZ ABLNO-V-125.000MHZ ABLNO-V-155.520MHZ ABLNO-V-96.000MHZ-T3 ABLNO-V-104.000MHZ ABLNO-V-160.000MHZ ABLNO-V-96.000MHZ-T3 ABLNO-V-165.550MHZ ABLNO-V-166.44.53125MHz