

# C8051T6xx/3xx One Time Programmable (OTP) USB MCUs

# Agenda

- C8051T6xx/3xx family overview
- C8051T6xx/3xx family differences from flash-based devices
- OTP development flow
- Other considerations
- Development tools
- Summary





# **USB OTP Device Family**

## Introducing the C8051T62x/32x

### Reduce cost, simplify design and shorten development time

- USB crystal-less operation capability
- Best-in-class analog capabilities five times faster than any competitor
- Accomplish more work in less time with a high performance processing core
- OTP versions for very cost-sensitive applications

### Accelerate time-to-market

- Production-ready software drivers
- Step-by-step application notes and code examples
- Easy-to-use development tools



### Pin and code compatible enabling an easy migration path

 OTP C8051T32x is compatible with Flash-based C8051F32x enabling a cost reduction path



## **USB** Design Challenges

- Typical USB microcontrollers lack high-precision analog capabilities creating a more complex and expensive system solution
  - Higher BOM cost: external components are required
  - Significant hardware and software design effort

#### Most applications require more than just USB connectivity

- Most MCUs are designed to enable only USB connectivity
- Multi-tasking operation can quickly saturate CPU performance

### Competitive limitations

- External analog components are required increasing BOM cost and complexity
- Expensive high-end or chip set solutions are implemented to overcome performance bottleneck







# OTP and Flash Device Differences C8051T62x/32x vs. C8051F34A

## **Code Memory Storage**

- Flash memory used on C8051F34A family
- Byte-programmable EPROM code memory on the C8051T62x/32x families
  - When pre-fetch engine is enabled (default) timing is similar to flash devices
  - Porting considerations
    - Insure no firmware routines exist to erase code memory
    - In application firmware can write to memory, but only once
  - Add a 4.7 uF capacitor to enable programming the V<sub>PP</sub> pin to ground
    - C8051T62x and C8051T32x devices

| Feature                                                          | C8051F34A | C8051T62x/32x |  |
|------------------------------------------------------------------|-----------|---------------|--|
| Code memory can be erased and reprogrammed                       | Yes       | No            |  |
| Programming voltage ( $V_{PP}$ ) required to program code memory | No        | Yes           |  |
| Code memory can be erased from firmware on the device            | Yes       | No            |  |
| Code memory can be written from firmware on the device           | Yes       |               |  |
| Code memory can be read from firmware on the device              | Yes       |               |  |



# Special Function Registers (SFR) (1 of 2)

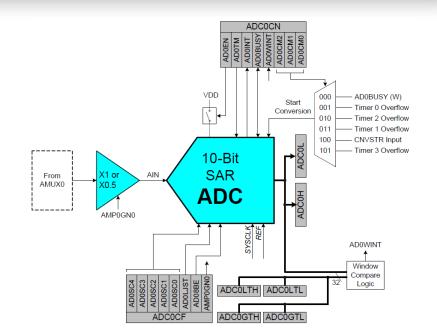
- Differences related to functionality and features
- SFRs can exist in one family and not another
  - Reading and writing these registers does not cause any problems if not present
  - Porting considerations
    - None
  - Example: P3 register is not found in the C8051T622 and is on the F34A

| F8         | SPIOCN                                                                                        | PCA0L               | PCA0H               | PCA0CPL0 | PCA0        | CPH0          | PCA0CPL4          | PCA0CPH4            | VDM0CN            |
|------------|-----------------------------------------------------------------------------------------------|---------------------|---------------------|----------|-------------|---------------|-------------------|---------------------|-------------------|
| F0         | В                                                                                             | POMDIN              | P1MDIN              | P2MDIN   |             | )PWM<br>IDIN) | IAPCN<br>(P4MDIN) | EIP1                | EIP2              |
| E8         | ADC0CN                                                                                        | PCA0CPL1            | PCA0CPH1            | PCA0CPL2 | PCA0        | CPH2          | PCA0CPL3          | PCA0CPH3            | RSTSRC            |
| E0         | ACC                                                                                           | XBR0                | XBR1                | XBR2     | IT0         | 1CF           | SMOD1             | EIE1                | EIE2              |
| D8         | PCA0CN                                                                                        | PCA0MD              | PCA0CPM0            | PCA0CPM1 | PCAG        | CPM2          | PCA0CPM3          | PCA0CPM4            | P3SKIP            |
| D0         | PSW                                                                                           | REF0CN              | SCON1               | SBUF1    | POS         | KIP           | P1SKIP            | P2SKIP              | USBOXCN           |
| C8         | TMR2CN                                                                                        | REG01CN<br>(REG0CN) | TMR2RLL             | TMR2RLH  | тм          | R2L           | TMR2H             | -                   | SMB0ADM<br>(-)    |
| C0         | SMB0CN                                                                                        | SMB0CF              | SMB0DAT             | ADC0GTL  | ADC         | 0GTH          | ADC0LTL           | ADC0LTH             | SMB0ADR<br>(P4)   |
| B8         | IP                                                                                            | CLKMUL              | P1MASK<br>(AMX0N)   | AMX0P    | ADC         | OCF           | ADC0L             | ADC0H               | -                 |
| В0         | P3                                                                                            | OSCXCN              | OSCICN              | OSCICL   | SBR         | RLL1          | SBRLH1            | P1MAT<br>(FLSCL)    | MEMKEY<br>(FLKEY) |
| <b>A</b> 8 | IE                                                                                            | CEKSEL              | EMIOCN              |          | SBC         | ON1           | -                 | POMASK<br>(P4MDOUT) | PFE0CN            |
| <b>A</b> 0 | P2                                                                                            |                     |                     |          |             | OUT           | P1MDOUT           | P2MDOUT             | P3MDOUT           |
| 98         | SCON0                                                                                         |                     | P3 100              |          |             |               | CPT0MD            | CPT1MX              | СРТ0МХ            |
| 90         | P1                                                                                            | R3L<br>10           |                     |          |             | TMR3H         | USB0ADR           | USB0DAT             |                   |
| 88         | TCON                                                                                          |                     |                     |          |             | TH1           | CKCON             | PSCTL               |                   |
| 80         | P0                                                                                            | SP                  | DPL                 | DPH      | P0N<br>(EMI | MAT<br>0TC)   | EMI0CF            | OSCLCN              | PCON              |
|            | 0(8)<br>Bit-Addressable                                                                       | 1(9)                | 1(9) 2(A) 3(B) 4(C) |          |             | 5(D)          | 6(E)              | 7(F)                |                   |
|            | 'T62x and 'T32x Register<br>('F34A Register) Cevices have different bits<br>same SFR location |                     |                     | s, but   |             | F34A Only     |                   |                     |                   |

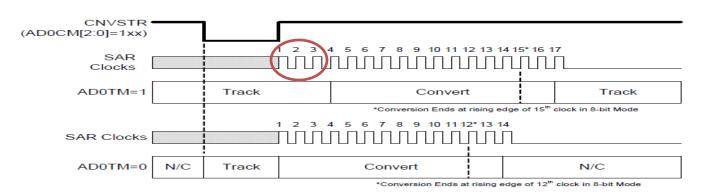


# **Special Function Registers (SFR) (2 of 2)**

### Some registers have additional bits defined


- Peripheral behavior remains unchanged if the default settings are used
- Porting considerations
  - To maintain functionality verify that default bit settings are used for additional bits in common registers
- Example:
  - REF0CN register adds REFBGS to halve the ADC reference voltage
  - Default setting maintains functionality with the C8051F34A

| F8         | SPIOCN                                                                                             | PCA0L               | PCA0H          | PCA0CPL0 | PCA0CPH0                 | PCA0CPL4          | PCA0CPH4            | VDM0CN          |
|------------|----------------------------------------------------------------------------------------------------|---------------------|----------------|----------|--------------------------|-------------------|---------------------|-----------------|
| F0         | В                                                                                                  | POMDIN              | P1MDIN         | P2MDIN   | PCA0PWM<br>(P3MDIN)      | IAPCN<br>(P4MDIN) | EIP1                | EIP2            |
| E8         | ADC0CN                                                                                             | PCA0CPL1            | PCA0CPH1       | PCA0CPL2 | PCA0CPH2                 | PCA0CPL3          | PCA0CPH3            | RSTSRC          |
| E0         | ACC                                                                                                | XBR0                | XBR1           | XBR2     | IT01CF                   | SMOD1             | EIE1                | EIE2            |
| D8         | PCA0CN                                                                                             | PCA0MD              | PCA0CPM0       | PCA0CPM1 | PCA0CPM2                 | PCA0CPM3          | PCA0CPM4            | P3SKIP          |
| D0         | PSW                                                                                                | REFOCN              | SCON1          | SBUF1    | POSKIP                   | P1SKIP            | P2SKIP              | USBOXCN         |
| C8         | TMR2CN                                                                                             | REG01CN<br>(REG0CN) | TMR2RLL        | TMR2RLH  | TMR2L                    | TMR2H             | -                   | SMB0ADM<br>(-)  |
| C0         | SMB0CN                                                                                             | \$МВ0               |                |          |                          | COLTL             | ADC0LTH             | SMB0ADR<br>(P4) |
| B8         | IP                                                                                                 | СЦКИ                | RF             | EF00     | 2N                       | DC0L              | ADC0H               | -               |
| В0         | P3                                                                                                 | osox                |                |          | P1MAT<br>(FLSCL)         | MEMKEY<br>(FLKEY) |                     |                 |
| <b>A</b> 8 | IE                                                                                                 | CLKS                |                |          |                          | -                 | P0MASK<br>(P4MDOUT) | PFE0CN          |
| A0         | P2                                                                                                 | SPI0CFG             | SPI0CKR        | SPIODAT  | POMDOUT                  | P1MDOUT           | P2MDOUT             | P3MDOUT         |
| 98         | SCON0                                                                                              | SBUF0               | CPT1CN         | CPT0CN   | CPT1MD                   | CPT1MD CPT0MD     |                     | CPT0MX          |
| 90         | P1                                                                                                 | TMR3CN              | TMR3RLL        | TMR3RLH  | TMR3L                    | TMR3H             | USB0ADR             | USB0DAT         |
| 88         | TCON                                                                                               | TMOD                | TL0            | TL1      | TH0 TH1                  |                   | CKCON               | PSCTL           |
| 80         | P0                                                                                                 | SP                  | DPL            | DPH      | POMAT<br>(EMIOTC) EMIOCF |                   | OSCLCN              | PCON            |
|            | 0(8)<br>Bit-Addressable                                                                            | 1(9)                | 2(A) 3(B) 4(C) |          |                          | 5(D)              | 6(E)                | 7(F)            |
|            | 'T62x and 'T32x Register<br>('F34A Register) Devices have different bits, but<br>same SFR location |                     |                |          | F34A Only                |                   |                     |                 |



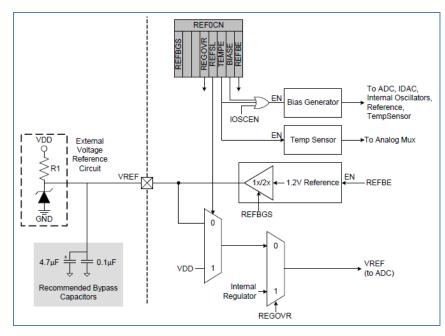

# **Analog Considerations**

- ADC sample rate increase to 500 ksps
  - SAR clock increased to 8.33 MHz
- Gain setting of 0.5x now available
- Single ended inputs only
- External conversion start timing provides additional options



ADC Diagram






# **Analog Considerations**

- More voltage reference options
- Calibrated temperature sensor

#### Porting considerations

- AMX0CN register should always be written as 11111b
- Default register settings for the reference selection maintain functionality
- Temperature sensors have different transfer functions and firmware should be adjusted accordingly







# Supply Voltage Considerations (1 of 2)

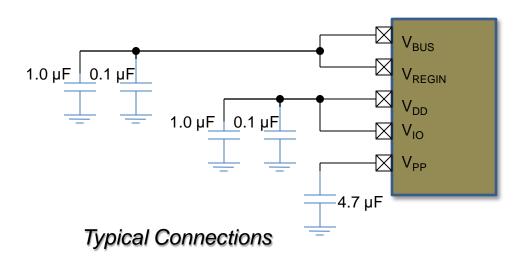
### Process technology change and second voltage regulator added

- V<sub>DD</sub> output now 3.45 V instead of 3.3 V
- Second regulator provides 1.8 V
  - Additional registers to support the regulator functionality (REG01CN)
  - Can be placed in a low power mode
- V<sub>IO</sub> pin added on some devices in case the port input/output voltages are required to be different from the V<sub>DD</sub> that the device is operating
- V<sub>DD</sub> monitor threshold voltage changes
- Porting considerations
  - None for firmware, but care must be observed for electrical connections

| Feature                                   | C8051F34A | C8051T63x/32x                       |
|-------------------------------------------|-----------|-------------------------------------|
| Supply voltage range                      | 2.7–3.6 V | 1.8–3.6 V                           |
| 3.3 V regulator for $V_{DD}$              | Yes       | No                                  |
| 3.45 V regulator for $V_{DD}$             | No        | Yes                                 |
| 1.8 V regulator for internal core voltage | No        | Yes                                 |
| Maximum voltage on any I/O pin            | 5.8 V     | *V <sub>DD</sub> + 3.6 V (5.8V max) |



\*If supply voltage reduced to 0 V then voltage at the pin must be less than 3.6 V


# Supply Voltage Considerations (2 of 2)

## V<sub>IO</sub> considerations

- $V_{IO} \leq V_{DD}$
- Not all packages have a V<sub>IO</sub> pin
- Reset can be pulled up to VDD

## V<sub>PP</sub> considerations

- When using in-application programming (IAP) a 4.7 uF capacitor is required on the V<sub>PP</sub> pin
- It is not recommended to use the V<sub>PP</sub> pin as GPIO if IAP to be used
  - If GPIO and IAP are required then the external circuit on the pin must not provide a load when the programming is enabled





## Low Power Modes and Clocking

### Suspend mode operation turns off the internal oscillator

- C8051F34A requires USB resume signaling or VBUS interrupt to exit suspend
- C8051T62x/32x devices exit suspend using
  - Resume signaling or VBUS interrupt
  - Port match
  - Timer 3 if running from external oscillator or the low frequency internal oscillator

### Clocking options vary between devices

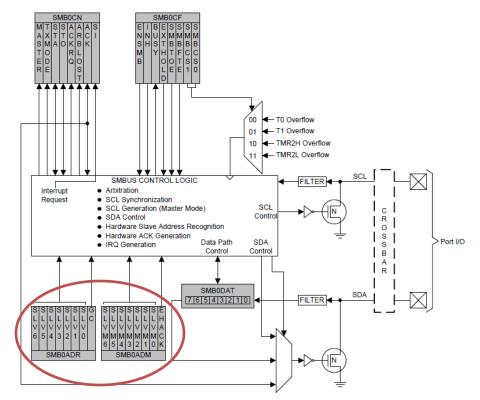
- Porting considerations
  - CLKMUL register remains across all devices for compatibility even though the internal oscillator is used to drive the USBCLK directly

| Feature                                                           | C8051F34A | C8051T62x |
|-------------------------------------------------------------------|-----------|-----------|
| Internal calibrated 24.5 MHz oscillator (divided by 1, 2, 4 or 8) | Yes       | No        |
| Internal calibrated 48 MHz oscillator (divided by 1,2,4 or 8)     | No        | Yes       |
| Internal 80 kHz oscillator (divided by 1, 2, 4 or 8)              | Yes       | Yes       |
| External CMOS clock (digital input)                               | Yes       | Yes       |
| External oscillator in RC or capacitor mode                       | Yes       | Yes       |
| External oscillator in crystal oscillator mode                    | Yes       | Yes       |



## **Additional Features**

## SMBus/I<sup>2</sup>C


- Optional hardware address recognition and automatic ACK
  - Reduces firmware overhead

## Port match

- Allows system events to be triggered by a logic value change on a port pin
- Can generate interrupts
- Can wake the device from suspend mode

## PCA

Includes 9, 10 and 11 bit PWM generation







# **Developing USB OTP Applications**

## The C8051T62x/32x Development Kit

### Kit contents for C8051T620 and C8051T622

- C8051T62x motherboard
- C8051T62x emulation daughter board with C8051F34A installed
- Socket daughter board (one of the following):
  - C8051T62x QFN 32-pin (C8051T620DK)
  - C8051T622 QFN 24-pin (C8051T622DK)
- Twenty device samples (one of the following):
  - C8051T620-GM (C8051T620DK)
  - C8051T622-GM (C8051T622DK)
- C8051Txxx development kit quick-start guide
- Product information CD-ROM includes:
  - Silicon Labs Integrated Development Environment (IDE)
  - Evaluation version of 8051 development tools (macro assembler, linker, C compiler)
  - Source code examples and register definition files
  - Documentation
- AC-to-DC universal power adapter
- Two USB cables



## **Required Software**

### Required software

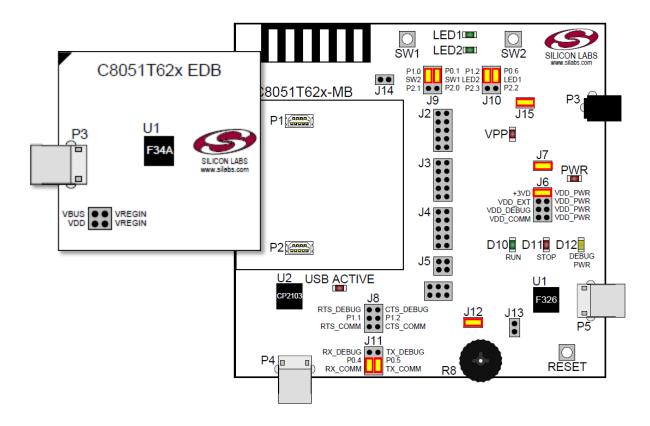
- Silicon Labs IDE or 3<sup>rd</sup> party IDE
- C compiler—code limited evaluation versions supplied with the kit

### Recommended software

- Configuration wizard—Configuration Wizard 2
- Virtual com port (VCP) drivers
- ToolStick Terminal
- uVision driver for Keil if using the uVision IDE

Software can be downloaded at http://www.silabs.com/mcudownloads






# **Using the Kits**

## **Attaching a Daughter Card**

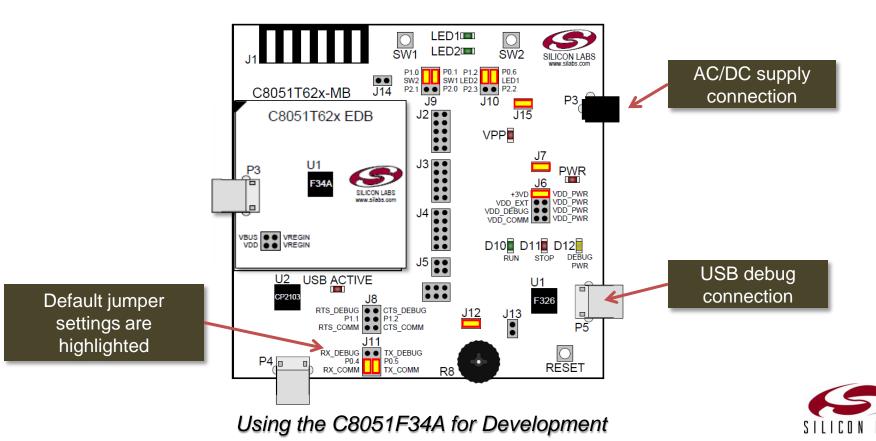
### Development can start using the flash-based C8051F34A

 Plug the C8051T62x EDB emulation daughter board into the motherboard sockets P1 and P2 (C8051T62x EDB has the C8051F34A device)



Using the C8051F34A for Development

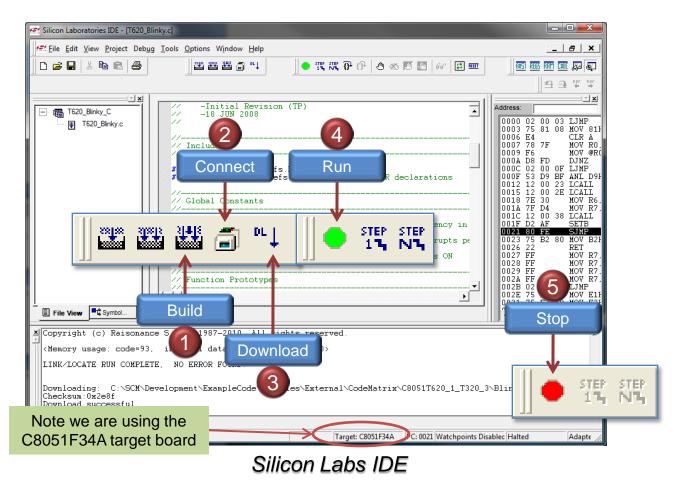



## **Making Mother Board Connections**

Verify jumper settings with the DK user's guide

#### Connect USB cable to the mother board P5

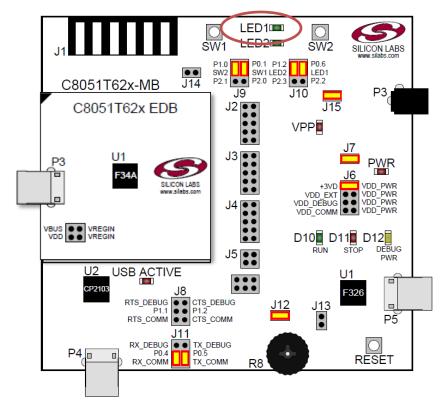
- Provides code download and debug capability
- Provides interface to targets UART peripheral if enabled using J11


#### Connect the AC/DC power adapter to the barrel plug P3



# **Verify Tool Flow**

## Build a sample project

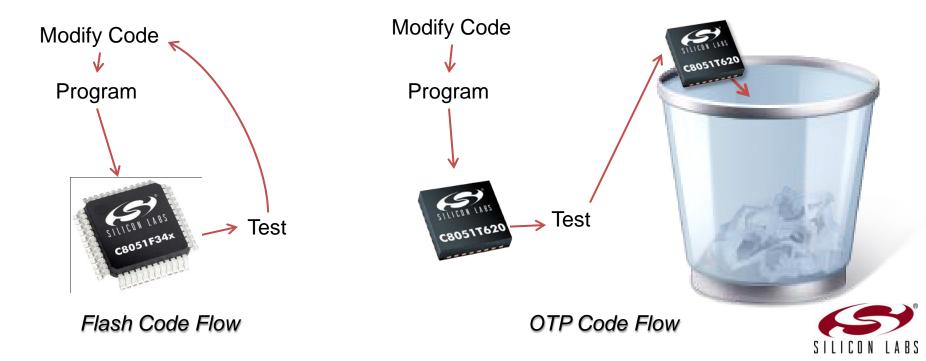

- Open T620\_Blinky\_C.wsp project using the Silicon Labs IDE
  - Found in the C:\Silabs\MCU\Examples\C8051T620\_1\_T320\_3 directory
- Build, connect, download and run the project





# Blinking the LED

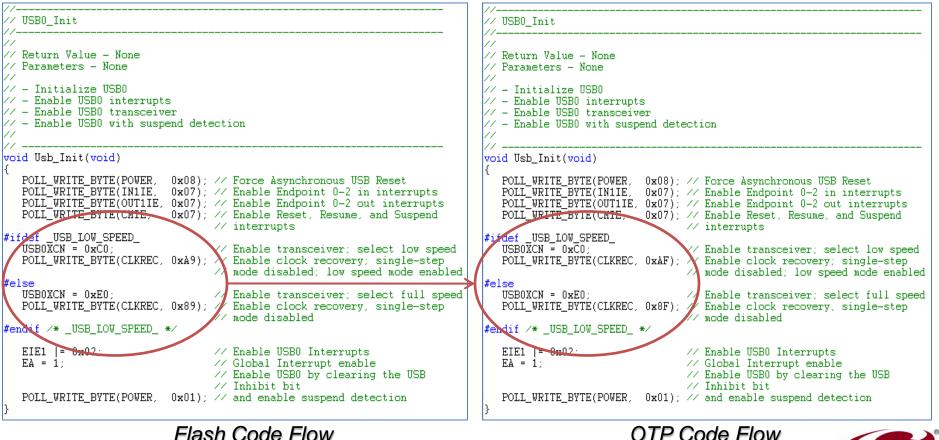
- When the application is running LED1 should be blinking
- Code can be modified and downloaded multiple times using the C8051F34A




Running the Test Application



## **Developing the Application**


- Make modifications to the example code to provide the required system functionality (recommended) or write the application from scratch
- Using the flash-based C8051F34A many code iterations can be done without having to burn the code into the OTP device
  - Since OTP devices can only be programmed once they would have to be discarded after each code test



# Porting the Application to the OTP Device

### Once the application code has been completed on the flash-based MCU migrate the project to the OTP version

- Make necessary porting changes based on MCU differences
- USB clock recovery step size



Flash Code Flow

#### **Clock Recovery Port Example**

## **Using the Oscillator**

- Internal oscillator is now 48 MHz instead of 12 MHz
- For backward compatibility the clock multiplier registers remain although they provide no functionality

// Sysclk\_Init 11 // Return Value - None // Parameters - None 11 // Initialize system clock to maximum frequency. 11 11 void Sysclk\_Init(void) #ifdef \_USB\_LOW\_SPEED\_ OSCICN |= 0x03; // Configure internal oscillator for // its maximum frequency and enable // missing clock detector CLKSEL = SYS\_INT\_OSC; // Select System clock // Select USB clock CLKSEL |= USB INT OSC DIV 2; #else OSCICN |= 0x03; // Configure internal oscillator for // its maximum frequency and enable // missing clock detector // This clock multiplier code is no longer necessary, but it is retained // here for backwards compatibility with the 'F34x.  $CLKMUL = 0 \times 00$ ; // Select internal oscillator as // input to clock multiplier CLKMUL | = 0x80;// Enable clock multiplier Delav(); // Delay for clock multiplier to begin CLKMUL |= 0xC0; // Initialize the clock multiplier Delay(); // Delay for clock multiplier to begin while(!(CLKMUL & 0x20)); // Wait for multiplier to lock CLKSEL = SYS INT OSC; // Select system clock CLKSEL |= USB\_4X\_CLOCK; // Select USB clock #endif /\* USB LOW SPEED \*/

Code remains from the C8051F34A. It can be removed when using the C8051T62x.

## **Applications with an ADC**

- Voltage reference options can be optimized for dynamic range
- C8051T62x/32x is single ended and doesn't have a mux for the negative input
- > SAR clock can remain the same or can be increased for faster sample rates

| //<br>// ADC0_Init                                                                                 |                                                                                            | //<br>// ADC0_Init                |                                                                                        |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|--|
| //<br>// Return Value: None<br>// Parameters: None<br>//<br>// Configures ADCO to make single-ende | ed analog measurements on pin P1.1                                                         | <pre>//</pre>                     |                                                                                        |  |
| void ADC0_Init (void)                                                                              |                                                                                            | void ADC0_Init (void)             |                                                                                        |  |
| ADCOCN = 0x02;                                                                                     | <pre>// ADC0 disabled, normal tracking,<br/>// conversion triggered on TMR2 overflow</pre> | ADCOCN = 0x02;                    | <pre>// ADC0 disabled, normal tracking, // conversion triggered on TMR2 overflow</pre> |  |
| REFOCN = 0x03;                                                                                     | <pre>// Enable on-chip VREF and buffer</pre>                                               | $\rightarrow$ REFOCN = 0x03;      | // Enable on-chip WREF and buffer                                                      |  |
| AMXOP = 0x13;<br>AMXON = 0x1F;                                                                     | // ADC0 positive input = P1.1<br>// ADC0 pegative input = GND                              | AMXOP = 0x0D;                     | <pre>// ADC0 positive input = P2.5</pre>                                               |  |
|                                                                                                    | // i.e., single ended mode                                                                 | ADCOCF = ((SYSCIK/3000000)-1)<<3; | // Set SAR clock to 3MHz                                                               |  |
| ADCOCF = ((SYSCLK/3000000)-1)<<3; -                                                                | // set SAR clock to 3MHz                                                                   | ADCOCF  = 0x00;                   | // Right-justify results                                                               |  |
| ADCOCF  = 0x00;                                                                                    | // right-justify results                                                                   | ADCOCF = 0x01;                    | // Gain = 1                                                                            |  |
| EIE1  = 0x08;                                                                                      | $\ensuremath{\sim}$ enable ADC0 conversion complete int.                                   | EIE1  = 0x08;                     | $\prime\prime$ Enable ADCO conversion complete int.                                    |  |
| ADOEN = 1;<br>}                                                                                    | // enable ADCO                                                                             | ADOEN = 1;<br>}                   | // Enable ADC0                                                                         |  |

Flash Code Flow

ADC Example

**OTP Code Flow** 

# **Measuring Temperature**

#### Temperature sensor measurements differ between the two families

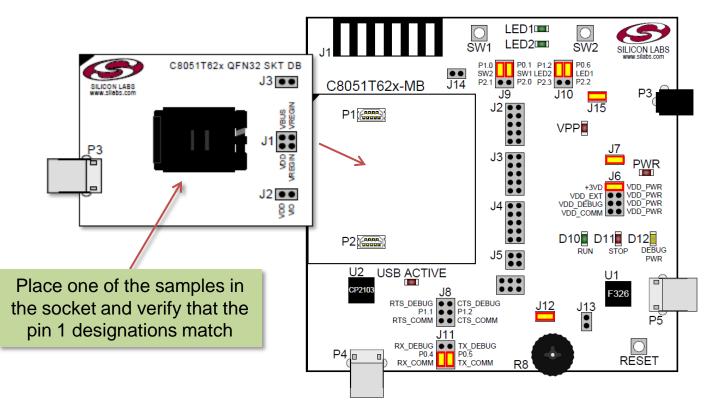
Transfer function of the temperature sensors is different

### > OTP devices have temperature compensation at 0 °C using V<sub>DD</sub>

#define COMP\_ADDRESS 0x3FFA // Location of TOFFH and TOFFL Compensation value stored U16 code COMPENSATION \_at\_ COMP\_ADDRESS; // TOFFH and TOFFL stored in EPROM in code memory // memory ADC0\_Init 🗥 Return Value : None 🗥 Parameters 👘 : None Initialize the ADC to use the temperature sensor void ADC0\_Init (void) REFOCN = 0x0E: // VREF is VDD, Temp. Sensor ON, Bias ON ADC uses V<sub>DD</sub> as V<sub>REE</sub> AMXOP = 0x1E;// Selects Temp. Sensor ADCOCF = ((SYSCLK/3000000)-1)<<3; // Set SAR clock to 3MHz Mux input set to temp sensor ADCOCF |= 0x04;// ADC0 is left justified ADCOCN = 0x82; // ADC ON, starts on TMR2 overflow EIE1 |= 0x08; // Enable ADC0 conversion complete int. // Calculate rounded temperature temp\_scaled \*= SLOPE; •Firmware uses the new slope, offset and With a left-justified ADC, we have to shift the decimal place // of temp scaled to the right so we can match the format of // OFFSET. Once the formats are matched, we can subtract OFFSET. compensation to determine temperature temp\_scaled = temp\_scaled >> OVER\_ROUND;



temp comp = temp\_scaled - COMPENSATION; // Apply TOFFH and TOFFL


// Apply offset to temp

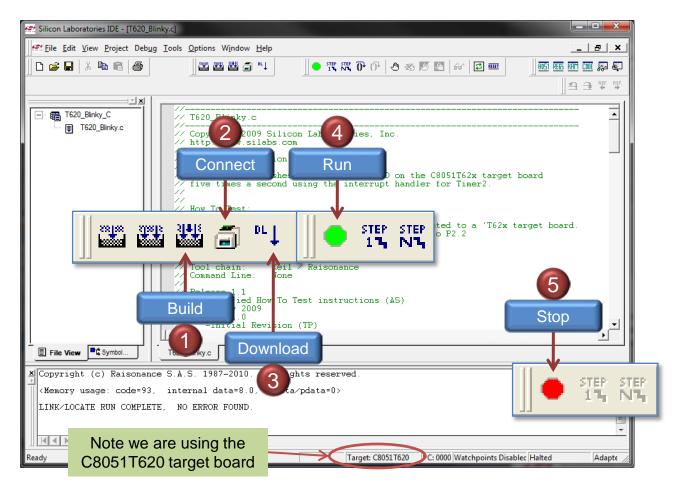
temp\_scaled -= OFFSET;

## **Change the Daughter Card**

### Once code porting has been completed

- Attach the C8051T620 SKT DB daughter card into the motherboard sockets P1 and P2
  - C8051T62x QFN SKT DN has a socket for the specific device package
  - Sample devices provided in the kit






Attaching the C8051T62x Daughter Card

## Build, Download and Run the Application

### Test the OTP application

Build, connect, download and run the project





Silicon Labs IDE

## **Available Documentation and Software**

- Product data sheets available (www.silabs.com/USB)
- Data shorts available (www.silabs.com/USB)
- Example code included on IDE installation (www.silabs.com/MCUdownloads)
- USBXpress drivers (www.silabs.com/USBXpress)
- Application Notes available (www.silabs.com/USB)
  - AN169 USBXpress programmer's guide
  - AN200 USB boot loader with shared USBXpress library
  - AN220 USB driver customization
  - AN249 Human interface device tutorial
  - AN368 Difference between the C8051F34A and the C8051T62x and C8051T32x device families
  - AN455 Porting code for C8051F320/1 devices to C8051T320/1 devices
  - AN456 Porting code for C8051F326/7 devices to C8051T326/7 devices
  - AN456 Porting code for C8051F326/7 to C8051T326/7 devices
  - AN532 HID library API specification
- Best-in-class product support and comprehensive software ecosystem
  - Silicon Labs offers free vendor PID (www.silabs.com/products/mcu/Pages/request-PID.aspx)
  - Pre-programming services







# Summary

## Summary

#### Silicon Labs USB solutions are designed to reduce cost, simplify design and shorten development time

- Best-in-class analog capabilities five times faster than any competitor
- Accomplish more work in less time with a high performance processing core
- USB crystal-less operation capability
- OTP versions for cost sensitive applications

#### > 22 new products supported by a comprehensive development ecosystem

- Production-ready software
- Step-by-step application notes and code examples
- Easy-to-learn development tools

#### Pin and code compatible enabling an easy migration path

- C8051F38x is pin and code compatible with the C8051F34x
- OTP C8051T32x is compatible with flash-based C8051F32x enabling a cost reduction path





# www.silabs.com/USB

#### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits - 8051 category:

Click to view products by Silicon Labs manufacturer:

Other Similar products are found below :

C8051F350-TB CY3684 C8051F360-TB-K C8051F310DK C8051F390-A-DK C8051F540-TB C8051F930-TB-K C8051F850-B-DK EVAL-ADUC814QSZ EVAL-ADUC831QSZ EVAL-ADUC832QSZ EVAL-ADUC834QSZ EVAL-ADUC841QSZ EVAL-ADUC845QSPZ FT51A-EVM MIKROE-2018 MIKROE-2019 MIKROE-257 MIKROE-598 MIKROE-703 PIM447 C8051F060DK C8051F064EK C8051F226DK C8051F330DK C8051F350DK C8051F380DK C8051F380-TB-K C8051F410DK C8051F500DK C8051F540DK C8051F580DK C8051F912DK C8051F930DK C8051F970-A-DK C8051F996DK C8051F996-TB EFM8BB1LCK F990SLIDEREK MCUNIVERSITYKIT SLBLDC-MTR-RD SLSTK2000A SLSTK2011A SLSTK2020A SLSTK2022A iMCU7100EVB EVAL-ADUC842QS SLRDK1000A C8051F912-TB C8051F380-TB