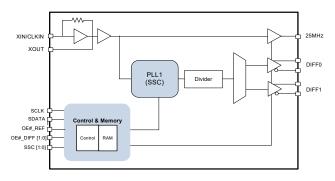

PCI-EXPRESS GEN1, GEN2, & GEN3 TWO-OUTPUT CLOCK GENER-ATOR WITH 25 MHz REFERENCE CLOCK & ACTIVE LOW-OE PINS

Features

- PCI-Express Gen1, Gen2 & Gen3 Compliant
- Supports Serial ATA (SATA) at 100 MHz
- Low power differential output buffers
- No termination resistors required
- Dedicated active low output enable pins for each output
- Pin selectable spread control
- Selectable frequencies: 100, 125, 3.3 V Power supply and 200 MHz
- Up two PCI-Express clocks
- 25 MHz reference clock

- 25 MHz Crystal Input or Clock input
- I²C support with readback capabilities
- Triangular spread spectrum profile for maximum electromagnetic interference (EMI) reduction
- Extended Temperature -40 to 85°C
- 24-pin QFN package

Patents pending


Applications

- **Network Attached Storage**
- Multi-function Printer
- Ideal for Thunderbolt applications
- Wireless Access Point
- Routers

Description

Si52131-A11A is a high-performance, PCle clock generator that can source two PCIe clocks and a buffered 25 MHz reference clock from a 25 MHz crystal or clock input. The PCle clock outputs are compliant to PCle Gen 1, Gen 2, and Gen 3 specifications. The device has three active low output enable pins for enabling and disabling each output. The device features two input select pins for frequency selection and spread control. The small footprint and low power consumption makes Si52131-A11A the ideal clock solution for consumer and embedded applications.

Functional Block Diagram

Si52131-A11A		

TABLE OF CONTENTS

Section	Page
1. Electrical Specifications	4
2. Functional Description	7
2.1. Crystal Recommendations	
2.2. OE Pin Function	
2.3. OE Assertion	3
2.4. OE Deassertion	
2.5. SS[1:0] Pins Function	
3. Test and Measurement Setup	
4. Control Registers	
4.1. I2C Interface	
4.2. Data Protocol	
5. Si52131-A11A Pin Descriptions 24-Pin QFN	
6. Ordering Guide	17
7. Package Outline	
Contact Information	

1. Electrical Specifications

Table 1. DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
3.3 V Operating Voltage	VDD core	3.3 ±5%	3.135	3.3	3.465	V
3.3 V Input High Voltage	V _{IH}	SS1:0	2.0	_	V _{DD} + 0.3	V
3.3 V Input Low Voltage	V _{IL}	SS1:0	V _{SS} - 0.3	_	0.8	V
Input High Voltage	V _{IHI2C}	SDATA, SCLK	2.2	_	_	V
Input Low Voltage	V _{ILI2C}	SDATA, SCLK	_	_	1.0	V
Input High Leakage Current	l _{IH}	Except internal pull-down resistors, 0 < V _{IN} < V _{DD}	_	_	5	μА
Input Low Leakage Current	I _{IL}	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	- 5	_	_	μА
3.3 V Output High Voltage (SE)	V _{OH}	I _{OH} = -1 mA	2.4	_	_	V
3.3 V Output Low Voltage (SE)	V _{OL}	I _{OL} = 1 mA	_	_	0.4	V
High-impedance Output Current	I_{OZ}		-10	_	10	μА
Input Pin Capacitance	C _{IN}		1.5	_	5	pF
Output Pin Capacitance	C _{OUT}		_	_	6	pF
Pin Inductance	L _{IN}		_	_	7	nΗ
Power Down Current	I _{DD_PD}		_	_	1	mA
Dynamic Supply Current	I _{DD_3.3V}	All outputs enabled. Differential clocks with 5" traces and 2 pF load. 25 MHz clock with 5" traces and 4 pF load	_	_	45	mA

Table 2. AC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal				I.	•	·L
Long-term Accuracy	L _{ACC}	Measured at V _{DD} /2 differential	_	_	250	ppm
Clock Input				•		
CLKIN Duty Cycle	T _{DC}	Measured at V _{DD} /2	47	_	53	%
CLKIN Rise/Fall Slew Rate	T _R /T _F	Measured between 0.2 V _{DD} and 0.8 V _{DD}	0.5	_	4.0	V/ns
CLKIN Cycle to Cycle Jitter	T _{CCJ}	Measured at VDD/2	_	_	250	ps
CLKIN Long Term Jitter	T _{LTJ}	Measured at VDD/2	_	_	350	ps
Input High Voltage	V _{IH}	XIN/CLKIN pin	2	_	VDD+0.3	V
Input Low Voltage	V _{IL}	XIN/CLKIN pin	_	_	0.8	V
Input High Current	I _{IH}	XIN/CLKIN pin, VIN = VDD	_	_	35	μΑ
Input Low Current	I _{IL}	XIN/CLKIN pin, 0 < VIN <0.8	-35	_	_	μA
DIFF at 0.7 V						•
Duty Cycle	T _{DC}	Measured at 0 V differential	45	_	55	%
Cycle to Cycle Jitter	T _{CCJ}	Measured at 0 V differential	_	35	50	ps
PCle Gen 1 Pk-Pk Jitter	Pk-Pk	PCle Gen 1	0	40	86	ps
PCle Gen 2 Phase Jitter	RMS _{GEN2}	10 kHz < F < 1.5 MHz	0	2	3.0	ps
		1.5 MHz < F < Nyquist	0	2	3.1	ps
PCIe Gen 3 Phase Jitter	RMS _{GEN3}	Includes PLL BW 2–4 MHz, CDR = 10 MHz	0	0.5	1.0	ps
Long Term Accuracy	L _{ACC}	Measured at 0 V differential	_	_	100	ppm
Rise/Fall Slew Rate	T _R /T _F	Measured differentially from ±150 mV	1	_	8	V/ns
Voltage High	V _{HIGH}		_	_	1.15	V
Voltage Low	V_{LOW}		-0.3	_	_	V
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300	_	550	mV
Spread Range	SPR-2	Down spread	_	-0.5	_	%
Modulation Frequency	F _{MOD}		30	31.5	33	kHz
REF at 3.3 V	1			•		
Duty Cycle	T _{DC}	Measurement at 1.5 V	45	_	55	%
Rise/Fall Slew Rate	T _R / T _F	Measured between 0.8 and 2.0 V	1.0	_	4.0	V/ns
Cycle to Cycle Jitter	T _{CCJ}	Measurement at 1.5 V	_	_	300	ps
Long Term Accuracy	L _{ACC}	Measured at 1.5 V	_	_	100	ppm
Enable/Disable and Setup				•	•	
Clock Stabilization from Power-up	T _{STABLE}		_	_	1.8	ms
Stopclock Setup Time	T _{SS}		10.0	_	_	ns
Note: Visit www.pcisig.com for comple	l .	cifications.			•	•

Table 3. Absolute Maximum Conditions

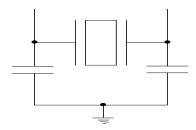
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Main Supply Voltage	V _{DD_3.3V}	Functional	_	_	4.6	V
Input Voltage	V _{IN}	Relative to V _{SS}	-0.5	_	4.6	V_{DC}
Temperature, Storage	T _S	Non-functional	-65	_	150	°C
Temperature, Operating Ambient	T _A	Functional	-40	_	85	°C
Temperature, Junction	TJ	Functional	_	_	150	°C
Dissipation, Junction to Case	Ø _{JC}	JEDEC (JESD 51)	_	_	20	°C/W
Dissipation, Junction to Ambient	Ø _{JA}	JEDEC (JESD 51)	_	_	60	°C/W
ESD Protection (Human Body Model)	ESD _{HBM}	JEDEC (JESD 22 - A114)	2000	_	_	V
Flammability Rating	UL-94	UL (Class)		V-0		

Note: While using multiple power supplies, the Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

2. Functional Description

2.1. Crystal Recommendations

The clock device requires a parallel resonance crystal.


Table 4. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Shunt Cap (max)	Motional (max)	Tolerance (max)	Stability (max)	Aging (max)
25 MHz	AT	Parallel	12–15 pF	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

2.1.1. Crystal Loading

Crystal loading is critical in achieving low ppm performance. To realize low ppm performance, use the total capacitance the crystal sees to calculate the appropriate capacitive loading (C₁).

Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal.

Figure 1. Crystal Capacitive Clarification

2.1.2. Calculating Load Capacitors

In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. Again, the capacitance on each side is in series with the crystal. The total capacitance on both side is twice the specified crystal load capacitance (C_L) . Trim capacitors are calculated to provide equal capacitive loading on both sides.

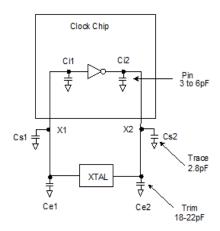


Figure 2. Crystal Loading Example

Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.

Load Capacitance (each side)

$$Ce = 2 \times CL - (Cs + Ci)$$

Total Capacitance (as seen by the crystal)

CLe =
$$\frac{1}{\left(\frac{1}{Ce1 + Cs1 + Ci1} + \frac{1}{Ce2 + Cs2 + Ci2}\right)}$$

■ CL: Crystal load capacitance

CLe: Actual loading seen by crystal using standard value trim capacitors

■ Ce: External trim capacitors

■ Cs: Stray capacitance (terraced)

■ Ci : Internal capacitance (lead frame, bond wires, etc.)

2.2. OE Pin Function

The \overline{OE} pin is an active low input used to enable and disable the output clock. To enable the output clock, the \overline{OE} pin needs to be logic low and the I²C output enable bit needs to be logic high. By default, the \overline{OE} pin is set to a logic low and the I²C output enable bit is set to a logic high. There are two methods to disable the output clock: the \overline{OE} pin is pulled to a logic high or the I²C output enable bit is set to a logic low. The \overline{OE} pin is required to be driven at all times even though it has an internal 100 k Ω resistor.

2.3. OE Assertion

The \overline{OE} pin is an active low input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the \overline{OE} function is achieved by pulling the \overline{OE} pin low and the I²C output enable bit high, which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles.

2.4. OE Deassertion

The \overline{OE} function is de-asserted by pulling the pin high, or setting the I²C output enable bit to a logic low. The corresponding output is stopped and the final output state is driven low.

2.5. SS[1:0] Pins Function

SS1 and SS0 are active inputs used to change the frequency and/or to enable -0.5% down spread on all DIFF outputs. When sampled high or low, the appropriate selection of frequency and spread from Table 5 is applied on all differential outputs. These inputs have an internal pull-down though a 100 k Ω resistor. The default state is SS[1:0] = 00, corresponding to 100 MHz outputs with spread spectrum disabled.

Table 5. SS0 & SS1 Frequency/Spread Selection

SS1	SS0	Differential Frequency	Differential Spread
0	0	100 MHz	Spread Off
0	1	100 MHz	-0.50%
1	0	125 MHz	Spread Off
1	1	200 MHz	Spread Off

3. Test and Measurement Setup

This diagram shows the test load configuration for differential clock signals.

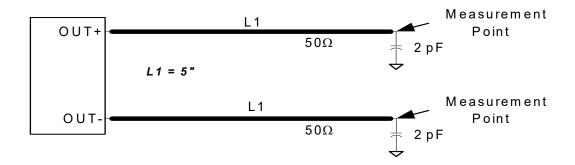


Figure 3. 0.7 V Differential Load Configuration

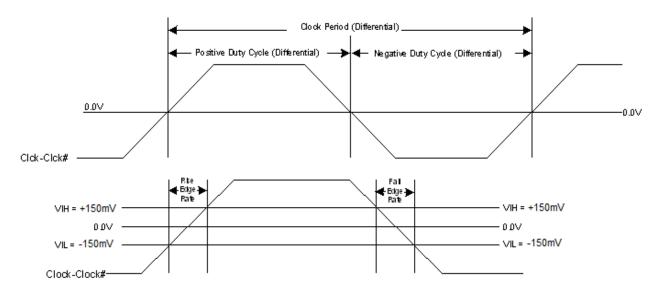


Figure 4. Differential Output Signals (for AC Parameters Measurement)

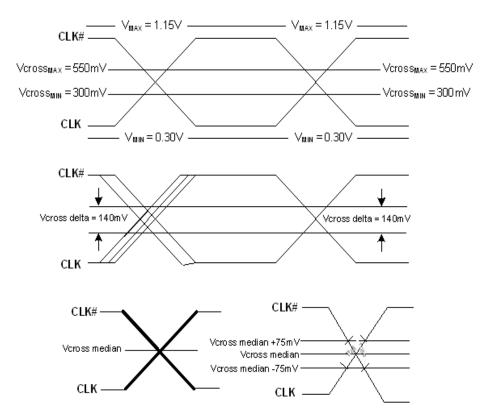


Figure 5. Single-Ended Measurement for Differential Output Signals (for AC Parameter Measurement)

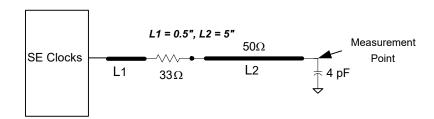


Figure 6. Single-Ended Clocks with Single Load Configuration

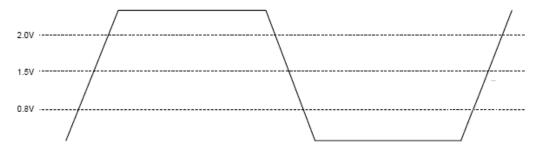


Figure 7. Single-Ended Output Signal (for AC Parameter Measurement)

4. Control Registers

4.1. I²C Interface

To enhance the flexibility and function of the clock synthesizer, an I^2C interface is provided. One can control various functions through the I^2C interface, such as individual enabling or disabling of the clock output buffers. The registers associated with the I^2C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required.

4.2. Data Protocol

The I²C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes.

The block write and block read protocol is outlined in Table 6 while Table 7 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h).

Table 6. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count–8 bits	20	Repeat start
28	Acknowledge from slave	27:21	Slave address–7 bits
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave–8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte /Slave Acknowledges	46:39	Data byte 1 from slave–8 bits
	Data Byte N–8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave–8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data Byte N from slave–8 bits
			NOT Acknowledge
			Stop

Table 7. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code-8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave–8 bits
		38	NOT Acknowledge
		39	Stop

Register 1. Byte 0: Control Register 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						25M_OE		
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 00000100

Bit	Name	Function
7:3	Reserved	
2	25_OE	Output Enable for 25 MHz. 0: Output disabled. 1: Output enabled.
1:0	Reserved	

Register 2. Byte 1: Control Register 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Туре	R/W							

Reset settings = 00000000

Bit	Name	Function
7:0	Reserved	

Register 3. Byte 2: Control Register 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF0_OE	DIFF1_OE						
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 11000000

Bit	Name	Function
7	DIFF0_OE	Output Enable for DIFF0. 0: Output disabled. 1: Output enabled.
6	DIFF1_OE	Output Enable for DIFF1. 0: Output disabled. 1: Output enabled.
5:0	Reserved	

Register 4. Byte 3: Control Register 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Rev Code Bit 3	Rev Code Bit 2	Rev Code Bit 1	Rev Code Bit 0	Vendor ID bit 3	Vendor ID bit 2	Vendor ID bit 1	Vendor ID bit 0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 00001000

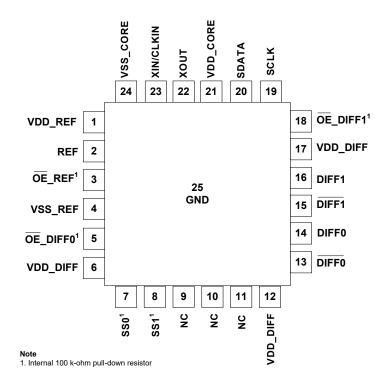
Bit	Name	Function			
7:4	Rev Code Bit 3:0	Program Revision Code			
3:0	Vendor ID bit 3:0	Vendor Identification Code			

Register 5. Byte 4: Control Register 4

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	BC7	BC7	BC5	BC4	BC3	BC2	BC1	BC0
Туре	R/W							

Reset settings = 00000110

Bit	Name	Function
7:0	BC7:0	Byte Count Register.


Register 6. Byte 5: Control Register 5

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF_Am_Sel	DIFF_Amp_Cntl[2]	DIFF_Amp_Cntl[1]	DIFF_Amp_Cntl[0]				
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 11011000

Bit	Name	Function			
7	DIFF_Amp_Sel	Amplitude control for DIFF Differential outputs. 0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4].			
6:4	DIF- F_Amp_Cntl[2:0]	DIFF Differential Outputs Amplitude Adjustment. 000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV 100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV			
3:0	Reserved				

5. Si52131-A11A Pin Descriptions: 24-Pin QFN

Table 8. Part Number 24-Pin QFN Descriptions

Pin#	Name	Type	Description					
1	VDD_REF	PWR	3.3 V power su	pply.				
2	REF	O, SE	3.3 V, 25 MHz	Reference	clock output.			
3	OE_REF ¹	I,PD	Active low inpu	t pin enabl	es REF (internal 10	0 kΩ pull-down)	-	
4	VSS_REF	GND	Ground.					
5	OE_DIFF0 ¹	I,PD	Active low input pin enables DIFF0 (internal 100 k Ω pull-down).			n).		
6	VDD_DIFF	PWR	3.3 V power supply.					
7	SS0 ¹	I, PD			bling frequency/spre Ω 0 k Ω pull-down).	ead selection on	DIFF0 and	
8	SS1 ¹	I, PD	Dii i i outputs	(internal i	oo ksz pull-dowii).			
			0 0 1	0 1 0	Differential Frequency 100 MHz 100 MHz 125 MHz 200 MHz	Differential Spread Spread Off -0.50% Spread Off Spread Off		

Table 8. Part Number 24-Pin QFN Descriptions (Continued)

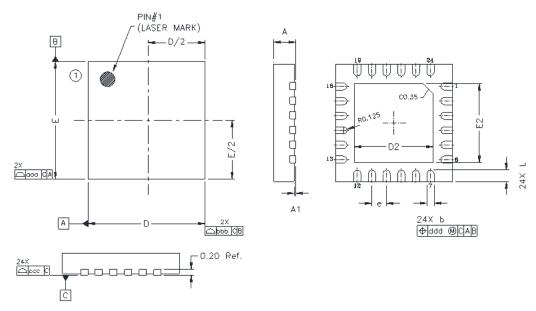
Pin#	Name	Туре	Description
9	NC	NC	No connect.
10	NC	NC	No connect.
11	NC	NC	No connect.
12	VDD_DIFF	PWR	3.3 V power supply.
13	DIFF0	O, DIF	0.7 V, 100 MHz differential clock output.
14	DIFF0	O, DIF	0.7 V, 100 MHz differential clock output.
15	DIFF1	O, DIF	0.7 V, 100 MHz differential clock output.
16	DIFF1	O, DIF	0.7 V, 100 MHz differential clock output.
17	VDD_DIFF	PWR	3.3 V power supply.
18	OE_DIFF1 ¹	I,PD	Active low input pin enables DIFF1 (internal 100 k Ω pull-down).
19	SCLK	I	I ² C compatible SCLOCK.
20	SDATA	I/O	I ² C compatible SDATA.
21	VDD_CORE	PWR	3.3 V power supply for core.
22	XOUT	0	25.00 MHz Crystal output, Float XOUT if using CLKIN (Clock input).
23	XIN/CLKIN	I	25.00 MHz Crystal input or 3.3 V, 25 MHz clock input.
24	VSS_CORE	GND	Ground for core.
25	GND	GND	Ground for bottom pad of the IC.

6. Ordering Guide

Part Number	Package Type	Temperature		
Lead-free				
Si52131-A11AGM	24-pin QFN	Extended, -40 to 85 °C		
Si52131-A11AGMR	24-pin QFN—Tape and Reel	Extended, –40 to 85 °C		

7. Package Outline

Figure 8 illustrates the package details. Table 9 lists the values for the dimensions shown in the illustration.



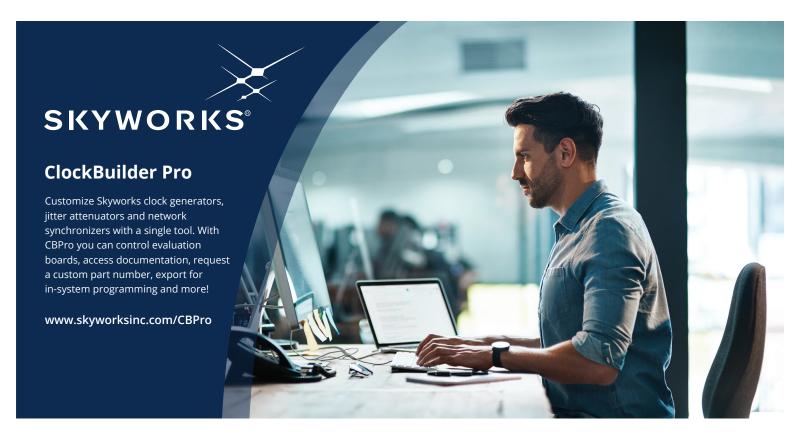

Figure 8. 24-Pin Quad Flat No Lead (QFN) Package

Table 9. Package	Diagram	Dimensions

Symbol	Millimeters			
	Min	Nom	Max	
Α	0.70	0.75	0.80	
A1	0.00	0.025	0.05	
b	0.20	0.25	0.30	
D	4.00 BSC.			
D2	2.60	2.70	2.80	
е		0.50 BSC.		
E	4.00 BSC.			
E2	2.60	2.70	2.80	
L	0.30	0.40	0.50	
aaa	0.10			
bbb	0.10			
ccc	0.08			
ddd	0.07			

Notes:

- All dimensions shown are in millimeters (mm) unless otherwise noted
- 2. Dimensioning and Tolerances per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Silicon Labs manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE
ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2
ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8
ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2
ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-4BCPZ-REEL7
AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2