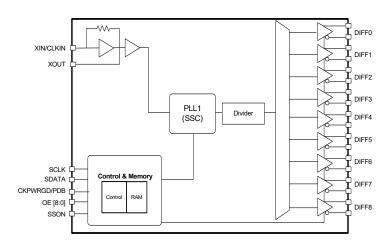


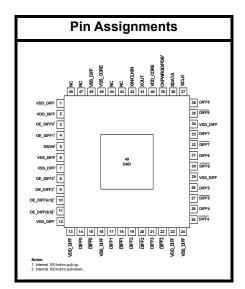
PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE-OUTPUT CLOCK GENERATOR

Features

- PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant
- Gen 3 SRNS Compliant
- Supports Serial-ATA (SATA) at 100 MHz
- Low power push-pull HCSL compatible differential outputs
- No termination resistors required
- Output enable pins for all clocks
- Spread enable pin
- 25 MHz crystal input or clock input

- PCI-Express Gen 1, Gen 2, Gen 3, Up to nine PCI-Express clock outputs
 - I²C support with readback capabilities
 - Triangular spread spectrum profile for maximum electromagnetic interference (EMI) reduction
 - Industrial temperature:
 - –40 to 85 °C
 - 3.3 V power supply
 - 48-pin QFN package


Applications


- Network attached storage
- Multi-function printer
- Wireless access point
- Servers

Description

The Si52147 is a high-performance, PCle clock generator that can source nine PCle clocks from a 25 MHz crystal or clock input. The clock outputs are compliant to PCle Gen 1, Gen 2, Gen 3, Gen 3 SRNS and Gen 4 common clock specifications. The device has six hardware output enable control pins for enabling and disabling differential outputs. A spread spectrum control pin for EMI reduction is also available. The small footprint and low power consumption makes the Si52147 the ideal clock solution for consumer and embedded applications. Measuring PCle clock jitter is quick and easy with the Skyworks Solutions PCle Clock Jitter Tool. Download it for free at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Functional Block Diagram

Patents pending

TABLE OF CONTENTS

Section	Page
1. Electrical Specifications	4
2. Functional Description	
2.1. Crystal Recommendations	7
2.2. CKPWRGD/PDB (Power Down) Pin	
2.3. PDB (Power Down) Assertion	
2.4. PDB Deassertion	
2.5. OE Pin	
2.6. OE Assertion	
2.7. OE Deassertion	
2.8. SSON Pin	
3. Test and Measurement Setup	
4. Control Registers	
4.1. I2C Interface	
4.2. Data Protocol	
5. Pin Descriptions: 48-Pin QFN	
6. Ordering Guide	
7. Package Outline	
8. Land Pattern	
Document Change List	

1. Electrical Specifications

Table 1. DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
3.3 V Operating Voltage	VDD core	3.3 ±5%	3.135	3.3	3.465	V
3.3 V Input High Voltage	V _{IH}	Control input pins	2.0	_	V _{DD} + 0.3	V
3.3 V Input Low Voltage	V_{IL}	Control input pins	V _{SS} - 0.3	_	0.8	V
Input High Voltage	V _{IHI2C}	SDATA, SCLK	2.2		_	V
Input Low Voltage	V _{ILI2C}	SDATA, SCLK	_	_	1.0	V
Input High Leakage Current	ІІН	Except internal pull-down resistors, 0 < V _{IN} < V _{DD}	_	_	5	μА
Input Low Leakage Current	I _{IL}	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	- 5	_	_	μА
High-impedance Output Current	I _{OZ}		-10	_	10	μА
Input Pin Capacitance	C _{IN}		1.5	_	5	pF
Output Pin Capacitance	C _{OUT}		_	_	6	pF
Pin Inductance	L _{IN}		_	_	7	nΗ
Power Down Current	I _{DD_PD}		_	_	1	mA
Dynamic Supply Current	I _{DD_3.3V}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_		85	mA

Table 2. AC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal			I	ı		
Long-term Accuracy	L _{ACC}	Measured at V _{DD} /2 differential	_	_	250	ppm
Clock Input				ı	I	
CLKIN Duty Cycle	T _{DC}	Measured at V _{DD} /2	47	_	53	%
CLKIN Rise and Fall Times	T _R /T _F	Measured between 0.2 V_{DD} and 0.8 V_{DD}	0.5	_	4.0	V/ns
CLKIN Cycle to Cycle Jitter	T _{CCJ}	Measured at VDD/2	<u> </u>	_	250	ps
CLKIN Long Term Jitter	T _{LTJ}	Measured at VDD/2	<u> </u>	_	350	ps
Input High Voltage	V _{IH}	XIN/CLKIN pin	2	_	VDD+0.3	V
Input Low Voltage	V _{IL}	XIN/CLKIN pin	_	_	0.8	V
Input High Current	I _{IH}	XIN/CLKIN pin, VIN = VDD	_	_	35	uA
Input Low Current	I _{IL}	XIN/CLKIN pin, 0 < VIN < 0.8	-35	_	_	uA
DIFF at 0.7 V				ı	I	
Duty Cycle	T _{DC}	Measured at 0 V differential	45	_	55	%
Output-to-Output skew	T _{SKEW}	Measured at 0 V differential	_	_	800	ps
Cycle to Cycle Jitter	T _{CCJ}	Measured at 0 V differential	_	35	50	ps
PCle Gen 1 Pk-Pk Jitter, Common Clock	Pk-Pk	PCIe Gen 1	0	40	50	ps
PCIe Gen 2 Phase Jitter,	RMS _{GEN2}	10 kHz < F < 1.5 MHz	0	1.8	2.0	ps
Common Clock		1.5 MHz < F < Nyquist	0	1.8	2.1	ps
PCIe Gen 3 Phase Jitter, Common Clock	RMS _{GEN3}	PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz	0	0.5	0.6	ps
PCIe Gen 3 Phase Jitter, Separate Reference No Spread, SRNS	RMS _{GEN3_SRNS}	PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz	_	0.35	0.42	ps
PCIe Gen 4 Phase Jitter, Common Clock	RMS _{GEN4}	PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz	_	0.5	0.6	ps
Long Term Accuracy	L _{ACC}	Measured at 0 V differential	<u> </u>	_	100	ppm
Rising/Falling Slew Rate	T _R /T _F	Measured differentially from ±150 mV	1	_	8	V/ns
Voltage High	V _{HIGH}		<u> </u>	_	1.15	V
Voltage Low	V_{LOW}		-0.3	_	_	V
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300	_	550	mV
Spread Range	SPR-2	Down spread	_	-0.5	<u> </u>	%
Modulation Frequency	F _{MOD}		30	31.5	33	kHz

Notes:

- 1. Visit https://pcisig.com/ for complete PCle specifications.
- 2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- **3.** Download the Skyworks Solutions PCle Clock Jitter Tool at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Table 2. AC Electrical Specifications (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Enable/Disable and Setup						
Clock Stabilization from Power-up	T _{STABLE}	Measured from the point both V _{DD} and clock input are valid	_	_	1.8	ms
Stopclock Set-up Time	T _{SS}		10.0	_	_	ns

Notes:

- 1. Visit https://pcisig.com/ for complete PCIe specifications.
- 2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- 3. Download the Skyworks Solutions PCIe Clock Jitter Tool at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Table 3. Absolute Maximum Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Main Supply Voltage	V _{DD_3.3V}	Functional	_	_	4.6	V
Input Voltage	V _{IN}	Relative to V _{SS}	-0.5		4.6	V_{DC}
Temperature, Storage	T _S	Non-functional	-65		150	°C
Temperature, Operating Ambient	T _A	Functional	-40		85	°C
Temperature, Junction	T _J	Functional	_	_	150	°C
Dissipation, Junction to Case	Ø _{JC}	JEDEC (JESD 51)	_	_	22	°C/W
Dissipation, Junction to Ambient	Ø _{JA}	JEDEC (JESD 51)			30	°C/W
ESD Protection (Human Body Model)	ESD _{HBM}	JEDEC (JESD 22-A114)	2000	_		V
Flammability Rating	UL-94	UL (Class)		V-0		

Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.

2. Functional Description

2.1. Crystal Recommendations

If using crystal input, the device requires a parallel resonance 25 MHz crystal.

Table 4. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Shunt Cap (max)	Motional (max)	Tolerance (max)	Stability (max)	Aging (max)
25 MHz	AT	Parallel	12–15 pF	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

2.1.1. Crystal Loading

Crystal loading is critical in achieving low ppm performance. In order to achieve low/zero ppm error, use the calculations in section 2.1.2 to estimate the appropriate capacitive loading (CL).

Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal.

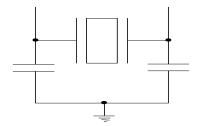


Figure 1. Crystal Capacitive Clarification

2.1.2. Calculating Load Capacitors

In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. The capacitance on each side is in series with the crystal. The total capacitance on both sides is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides.

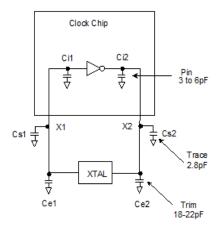


Figure 2. Crystal Loading Example

Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.

Load Capacitance (each side)

$$Ce = 2 \times CL - (Cs + Ci)$$

Total Capacitance (as seen by the crystal)

CLe =
$$\frac{1}{(\frac{1}{Ce1 + Cs1 + Ci1} + \frac{1}{Ce2 + Cs2 + Ci2})}$$

- CL: Crystal load capacitance
- CLe: Actual loading seen by crystal using standard value trim capacitors
- Ce: External trim capacitors
- Cs: Stray capacitance (terraced)
- Ci: Internal capacitance (lead frame, bond wires, etc.)

2.2. CKPWRGD/PDB (Power Down) Pin

The CKPWRGD/PDB pin is a dual-function pin. During initial power up, the pin functions as the CKPWRGD pin. Upon the first power up, if the CKPWRGD pin is low, the outputs will be disabled, but the crystal oscillator and I^2C logics will be active. Once the CKPWRGD pin has been sampled high by the clock chip, the pin assumes a PDB functionality. When the pin has assumed a PDB functionality and is pulled low, the device will be placed in power down mode. The CKPWRGD/PDB pin is required to be driven at all times even though it has an internal $100 \text{ k}\Omega$ resistor.

2.3. PDB (Power Down) Assertion

The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low in power down mode. In power down mode, all outputs, the crystal oscillator, and the I²C logic are disabled.

2.4. PDB Deassertion

When a valid rising edge on CKPWRGD/PDB pin is applied, all outputs are enabled in a glitch-free manner within two to six output clock cycles.

2.5. OE Pin

The OE pin is an active high input used to enable and disable the output clock. To enable the output clock, the OE pin and the I^2C OE bit need to be a logic high. By default, the OE pin and the I^2C OE bit are set to a logic high. There are two methods to disable the output clock: the OE pin is pulled to a logic low, or the I^2C OE bit is set to a logic low. The OE pin is required to be driven at all times even though it has an internal 100 k Ω resistor.

2.6. OE Assertion

The OE pin is an active high input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OE function is achieved by pulling the OE pin and the I²C OE bit high which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles.

2.7. OE Deassertion

The OE function is deasserted by pulling the pin or the I^2C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low.

2.8. SSON Pin

The SSON pin is an active input used to enable –0.5% spread spectrum on the outputs. When sampled high, –0.5% spread is enabled on the output clocks. When sampled low, the output clocks are non-spread.

3. Test and Measurement Setup

Figure 3 shows the test load configuration for the HCSL compatible output clocks.

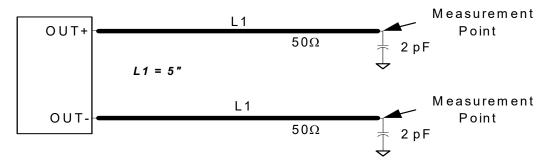


Figure 3. 0.7 V Differential Load Configuration

Please reference application note AN781 for recommendations on how to terminate the differential outputs for LVDS, LVPECL, or CML signalling levels.

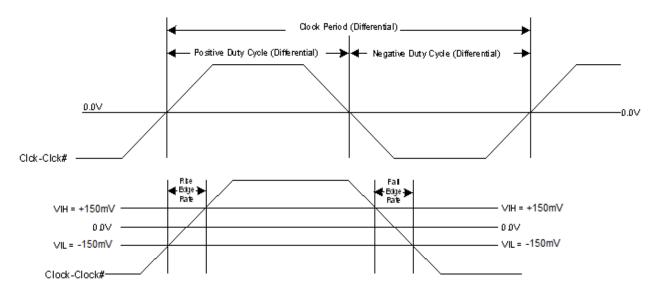


Figure 4. Differential Output Signals (for AC Parameters Measurement)

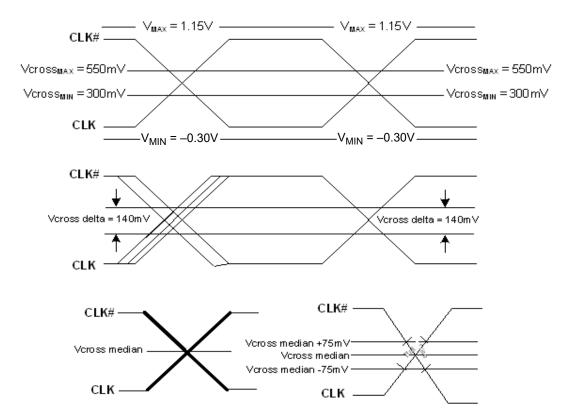


Figure 5. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)

4. Control Registers

4.1. I²C Interface

To enhance the flexibility and function of the clock synthesizer, an I^2C interface is provided. Through the I^2C interface, various device functions are available, such as individual clock output enablement. The registers associated with the I^2C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required.

4.2. Data Protocol

The clock driver I²C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes.

The block write and block read protocol is outlined in Table 5 while Table 6 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h).

Table 5. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address—7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code—8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count—8 bits	20	Repeat start
28	Acknowledge from slave	27:21	Slave address–7 bits
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave–8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte/Slave Acknowledges	46:39	Data byte 1 from slave–8 bits
	Data Byte N–8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave–8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data Byte N from slave–8 bits
			NOT Acknowledge
			Stop

Table 6. Byte Read and Byte Write Protocol

	Byte Write Protocol	Byte Read Protocol		
Bit	Description	Bit	Description	
1	Start	1	Start	
8:2	Slave address–7 bits	8:2	Slave address–7 bits	
9	Write	9	Write	
10	Acknowledge from slave	10	Acknowledge from slave	
18:11	Command Code-8 bits	18:11	Command Code–8 bits	
19	Acknowledge from slave	19	Acknowledge from slave	
27:20	Data byte–8 bits	20	Repeated start	
28	Acknowledge from slave	27:21	Slave address–7 bits	
29	Stop	28	Read	
		29	Acknowledge from slave	
		37:30	Data from slave–8 bits	
		38	NOT Acknowledge	
		39	Stop	

Control Register 0. Byte 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Туре	R/W							

Reset settings = 00000000

Bit	Name	Function
7:0	Reserved	

Control Register 1. Byte 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DIFF0_OE		DIFF1_OE	DIFF2_OE	DIFF3_OE
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7:5	Reserved	
4	DIFF0_OE	Output Enable for DIFF0. 0: Output disabled. 1: Output enabled.
3	Reserved	
2	DIFF1_OE	Output Enable for DIFF1. 0: Output disabled. 1: Output enabled.
1	DIFF2_OE	Output Enable for DIFF2. 0: Output disabled. 1: Output enabled.
0	DIFF3_OE	Output Enable for DIFF3. 0: Output disabled. 1: Output enabled.

Control Register 2. Byte 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF4_OE	DIFF5_OE	DIFF6_OE	DIFF7_OE	DIFF8_OE			
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7	DIFF4_OE	Output Enable for DIFF4. 0: Output disabled. 1: Output enabled.
6	DIFF5_OE	Output Enable for DIFF5. 0: Output disabled. 1: Output enabled.
5	DIFF6_OE	Output Enable for DIFF6. 0: Output disabled. 1: Output enabled.
4	DIFF7_OE	Output Enable for DIFF7. 0: Output disabled. 1: Output enabled.
3	DIFF8_OE	Output Enable for DIFF8. 0: Output disabled. 1: Output enabled.
2:0	Reserved	

Control Register 3. Byte 3

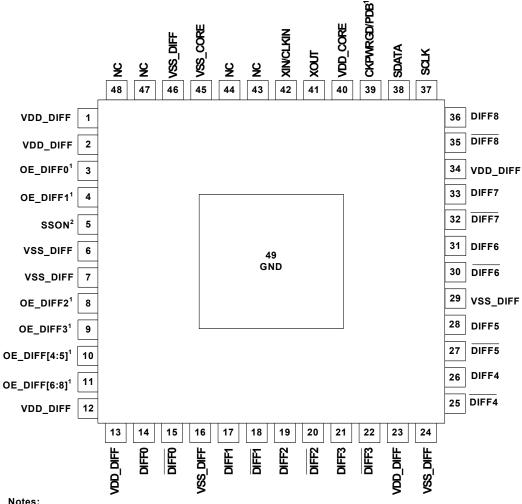
Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Rev Code[3:0]			Vendor ID[3:0]				
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 00001000

Bit	Name	Function
7:4	Rev Code[3:0]	Program Revision Code.
3:0	Vendor ID[3:0]	Vendor Identification Code.

Control Register 4. Byte 4

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		BC[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	


Bit	Name	Function
7:0	BC[7:0]	Byte Count Register.

Control Register 5. Byte 5

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF_Amp_Sel	DIFF_Amp_Cntl[2]	DIFF_Amp_Cntl[1]	DIFF_Amp_Cntl[0]				
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function				
7	DIFF_Amp_Sel	Amplitude Control for DIFF Differential Outputs. 0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4].				
6	DIFF_Amp_Cntl[2]	DIFF Differential Outputs Amplitude Adjustment.				
5	DIFF_Amp_Cntl[1]	000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV				
4	DIFF_Amp_Cntl[0]	100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV				
3:0	Reserved					

5. Pin Descriptions: 48-Pin QFN

Notes:

- 1. Internal 100 kohm pull-up.
- 2. Internal 100 kohm pull-down.

Table 7. Si 52147 48-Pin QFN Descriptions

Pin#	Name	Туре	Description
1	VDD_DIFF	PWR	3.3 V Power Supply
2	VDD_DIFF	PWR	3.3 V Power Supply
3	OE_DIFF0	I,PU	Active high input pin enables DIFF0 (internal 100 $k\Omega$ pull-up).
4	OE_DIFF1	I,PU	Active high input pin enables DIFF1 (internal 100 $k\Omega$ pull-up).
5	SSON	I, PD	Active high input pin enables –0.5% spread on DIFF clocks (internal 100 $k\Omega$ pull-down)
6	VSS_DIFF	GND	Ground
7	VSS_DIFF	GND	Ground

Table 7. Si 52147 48-Pin QFN Descriptions (Continued)

Pin#	Name	Туре	Description	
8	OE_DIFF2	I,PU	Active high input pin enables DIFF2 (internal 100 k Ω pull-up).	
9	OE_DIFF3	I,PU	Active high input pin enables DIFF3 (internal 100 k Ω pull-up).	
10	OE_DIFF[4:5]	I,PU	Active high input pin enables DIFF[4:5] (internal 100 kΩ pull-up).	
11	OE_DIFF[6:8]	I,PU	Active high input pin enables DIFF[6:8] (internal 100 kΩ pull-up).	
12	VDD_DIFF	PWR	3.3 V Power Supply	
13	VDD_DIFF	PWR	3.3 V Power Supply	
14	DIFF0	O, DIF	0.7 V, 100 MHz differential clock output	
15	DIFF0	O, DIF	0.7 V, 100 MHz differential clock output	
16	VSS_DIFF	GND	Ground	
17	DIFF1	O, DIF	0.7 V, 100 MHz differential clock output	
18	DIFF1	O, DIF	0.7 V, 100 MHz differential clock output	
19	DIFF2	O, DIF	0.7 V, 100 MHz differential clock output	
20	DIFF2	O, DIF	0.7 V, 100 MHz differential clock output	
21	DIFF3	O, DIF	0.7 V, 100 MHz differential clock output	
22	DIFF3	O, DIF	0.7 V, 100 MHz differential clock output	
23	VDD_DIFF	PWR	3.3V Power Supply	
24	VSS_DIFF	GND	Ground	
25	DIFF4	O, DIF	0.7 V, 100 MHz differential clock output	
26	DIFF4	O, DIF	0.7 V, 100 MHz differential clock output	
27	DIFF5	O, DIF	0.7 V, 100 MHz differential clock output	
28	DIFF5	O, DIF	0.7 V, 100 MHz differential clock output	
29	VSS_DIFF	GND	Ground	
30	DIFF6	O, DIF	0.7 V, 100 MHz differential clock output	
31	DIFF6	O, DIF	0.7 V, 100 MHz differential clock output	
32	DIFF7	O, DIF	0.7 V, 100 MHz differential clock output	
33	DIFF7	O, DIF	0.7 V, 100 MHz differential clock output	
34	VDD_DIFF	PWR	3.3 V Power Supply	
35	DIFF8	O, DIF	0.7 V, 100 MHz differential clock output	
36	DIFF8	O, DIF	0.7 V, 100 MHz differential clock output	

Table 7. Si 52147 48-Pin QFN Descriptions (Continued)

Pin#	Name	Туре	Description	
37	SCLK	I	I ² C compatible SCLOCK	
38	SDATA	I/O	I ² C compatible SDATA	
39	CKPWRGD/PDB	I, PU	Active low input pin asserts power down (PDB) and disables all outpu (internal 100 k Ω pull-up).	
40	VDD_CORE	PWR	3.3 V Power Supply	
41	XOUT	0	25.00 MHz crystal output, Float XOUT if using only CLKIN (Clock input).	
42	XIN/CLKIN	I	25.00 MHz crystal input or 3.3 V, 25 MHz Clock Input.	
43	NC	NC	No Connect	
44	NC	NC	No Connect	
45	VSS_CORE	GND	Ground	
46	VSS_DIFF	GND	Ground	
47	NC	NC	No Connect	
48	NC	NC	No Connect	
49	GND	GND	Ground for bottom pad of the IC.	

Si52147

6. Ordering Guide

Part Number	Package Type	Temperature
Lead-free		
Si52147-A01AGM	48-pin QFN	Industrial, –40 to 85 °C
Si52147-A01AGMR	48-pin QFN—Tape and Reel	Industrial, –40 to 85 °C

7. Package Outline

Figure 6 illustrates the package details for the Si52147. Table 8 lists the values for the dimensions shown in the illustration.

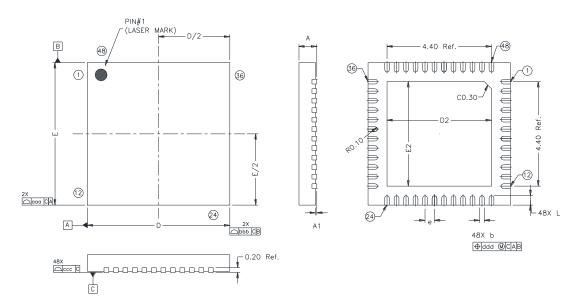


Figure 6. 48-Pin Quad Flat No Lead (QFN) Package

Table 8. Package Diagram Dimensions

Symbol	Millimeters		
	Min	Nom	Max
A	0.70	0.75	0.80
A1	0.00	0.025	0.05
b	0.15	0.20	0.25
D	6.00 BSC		
D2	4.30	4.40	4.50
е	0.40 BSC		
E	6.00 BSC		
E2	4.30	4.40	4.50
L	0.30	0.40	0.50
aaa	0.10		
bbb	0.10		
ccc	0.08		
ddd	0.07		

Notes:

- All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. Land Pattern

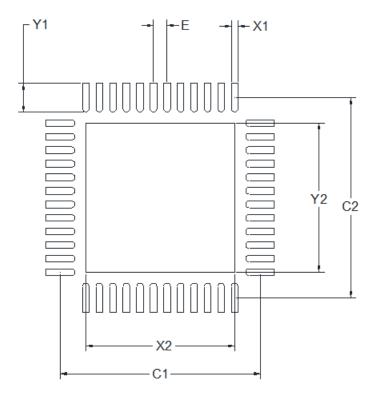


Figure 7. QFN Land Pattern

Table 9. Land Pattern Dimensions

Dimension	Min	Max	
C1	5.85	5.95	
C2	5.85	5.95	
X1	0.15	0.25	
Y1	0.80	0.90	
E	0.40 BSC		
X2	4.35	4.45	

Table 9. Land Pattern Dimensions (Continued)

Y2	4.35	4.45
		1

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter
- 7. pads
- **8.** A 4x4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad to achieve between 50-60% solder coverage.

Card Assembly

- **9.** A No-Clean, Type-3 solder paste is recommended.
- 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 1.0

- Updated pinout.
- Updated Table 2.
- Updated section 2.1.
- Updated section 2.1.1.
- Updated sections 2.2 through 2.8.
- Updated section 4.2.
- Updated Table 7.

Revision 1.0 to Revision 1.1

 Removed Moisture Sensitivity Level specification from Table 3.

Revision 1.1 to Revision 1.2

- Updated Table 2.
- Updated Section 3.

Revision 1.2 to Revision 1.3

- Updated Features on page 1.
- Updated Description on page 1.
- Updated specs in Table 2, "AC Electrical Specifications," on page 5.

Revision 1.3 to Revision 1.4

Added test condition for Tstable in Table 2.

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Silicon Labs manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE
ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7
MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI
5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2
MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD95160BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2