

DB1200ZL 12-OUTPUT PCIE GEN 3 BUFFER

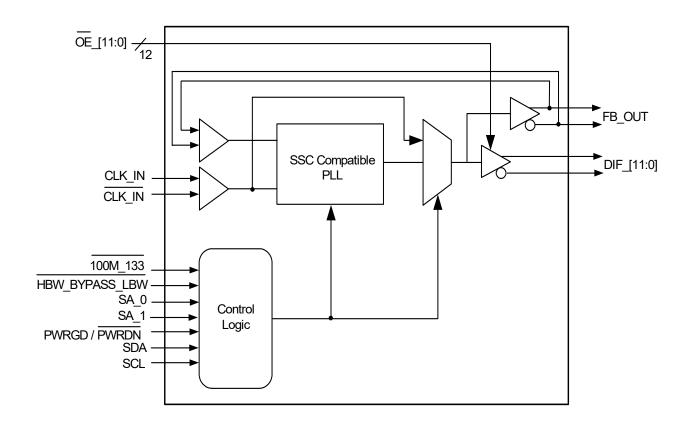
Features

- Twelve 0.7 V low-power, pushpull, HCSL-compatible PCIe Gen 3 outputs
- Individual OE HW pins for each output clock
- 100 MHz /133 MHz PLL operation, supports PCIe and QPI
- PLL bandwidth SW SMBUS programming overrides the latch value from HW pin
- 9 selectable SMBUS addresses
- SMBus address configurable to allow multiple buffers in a single control network 3.3 V supply voltage operation
- Integrated termination resistors supporting 85 Ω transmission lines

Applications

- Server
- Storage

- PLL or bypass mode
- Spread spectrum tolerable
- 1.05 to 3.3 V I/O supply voltage
- 50 ps output-to-output skew
- 50 ps cyc-cyc jitter (PLL mode)
- Low phase jitter (Intel QPI, PCIe Gen 1/2/3/4 common clock compliant)
- Gen 3 SRNS Compliant
- 100 ps input-to-output delay
- Extended Temperature: -40 to 85 °C
- Package: 64-pin QFN
- For higher output devices or variations of this device, contact Skyworks Solutions


Patents pending

- r
- Data center
- Enterprise Switches and Routers

Description

The Si53112-A03A is a low-power, 12-output, differential clock buffer that meets all of the performance requirements of the Intel DB1200ZL specification. To reduce board space and bill of material cost, the device fully integrates all external resistors, supporting 85 Ω transmission lines. The device is optimized for distributing reference clocks for Intel[®] QuickPath Interconnect (Intel QPI), PCIe Gen 1/Gen 2/Gen 3/Gen 4, SAS, SATA, and Intel Scalable Memory Interconnect (Intel SMI) applications. The VCO of the device is optimized to support 100 MHz and 133 MHz operation. Each differential output has a dedicated hardware output enable pin for maximum flexibility and power savings. Measuring PCIe clock jitter is quick and easy with the Skyworks Solutions PCIe Clock Jitter Tool. Download it for free at https://www.skyworksinc.com/en/application-pages/pciexpress-learning-center.

Functional Block Diagram

² Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 3, 2021

TABLE OF CONTENTS

Section

Page

1. Electrical Specifications	
2. Functional Description	1
2.1. CLK_IN, CLK_IN	
2.2. OE and Output Enables (Control Registers) 1	1
2.3. 100M_133M—Frequency Selection	
2.4. SA_0, SA_1—Address Selection	
2.5. PWRGD/PWRDN	
2.6. HBW BYPASS LBW	4
2.7. Miscellaneous Requirements	
2.8. Buffer Power-Up State Machine	
3. Test and Measurement Setup	
3.1. Input Edge	
3.2. Termination of Differential Outputs	
4. Control Registers	
4.1. Byte Read/Write	
4.2. Block Read/Write	
4.3. Control Registers	
5. Power Filtering Example	
•	
5.1. Ferrite Bead Power Filtering	
6. Pin Descriptions: 64-Pin QFN	
7. Ordering Guide	
8. Package Outline	
9. Land Pattern	2

1. Electrical Specifications

Table 1. DC Operating Characteristics

V_{DD A} = 3.3 V±5%, V_{DD} = 3.3 V±5%

Parameter	Symbol	Test Condition	Min	Max	Unit
3.3 V Core Supply Voltage	VDD/VDD_A	3.3 V ±5%	3.135	3.465	V
3.3 V I/O Supply Voltage ¹	VDD_IO	1.05 V to 3.3 V ±5%	0.9975	3.465	V
3.3 V Input High Voltage	V _{IH}	VDD	2.0	VDD+0.3	V
3.3 V Input Low Voltage	V _{IL}		VSS-0.3	0.8	V
Input Leakage Current ²	I _{IL}	0 < VIN < VDD	-5	+5	μA
3.3 V Input High Voltage ³	V _{IH_FS}	VDD	0.7	VDD+0.3	V
3.3 V Input Low Voltage ³	V _{IL_FS}		VSS-0.3	0.35	V
3.3 V Input Low Voltage	V _{IL_Tri}		0	0.8	V
3.3 V Input Med Voltage	V _{IM_Tri}		1.2	1.8	V
3.3 V Input High Voltage	V _{IH_Tri}		2.2	VDD	V
3.3 V Output High Voltage ⁴	V _{OH}	I _{OH} = –1 mA	2.4		V
3.3 V Output Low Voltage ⁴	V _{OL}	I _{OL} = 1 mA	_	0.4	V
Input Capacitance ⁵	C _{IN}		2.5	4.5	pF
Output Capacitance ⁵	C _{OUT}		2.5	4.5	pF
Pin Inductance	L _{PIN}		_	7	nH
Ambient Temperature	T _A	No Airflow	-40	85	°C

Notes:

1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.

2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state current requirements.

3. Internal voltage reference is to be used to guarantee V_{IH}FS and V_{IL}FS thresholds levels over full operating range.

4. Signal edge is required to be monotonic when transitioning through this region.

5. Ccomp capacitance based on pad metallization and silicon device capacitance. Not including pin capacitance.

Table 2. Current Consumption

 T_A = -40 to 85 °C; supply voltage V_{DD} = 3.3 V ±5%

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Current	IDD _{VDD}	133 MHz, VDD Rail, Zo=85 Ω	—	18	25	mA
	IDD _{VDDA}	133 MHz, VDDA + VDDR, PLL Mode, Zo=85 Ω	_	17	20	mA
	IDD _{VDDIO}	133 MHz, CL = Full Load, VDD IO Rail, Zo=85 Ω	—	85	110	mA
Power Down Current	IDD _{VDDPD}	Power Down, VDD Rail		0.4	1	mA
	IDD _{VDDAPD}	Power Down, VDDA Rail	—	2	5	mA
	IDD _{VDDIOPD}	Power Down, VDD_IO Rail		0.2	0.5	mA

Table 3. Output Skew, PLL Bandwidth and Peaking

 $T_A = -40$ to 85 °C; supply voltage $V_{DD} = 3.3 \text{ V} \pm 5\%$

Parameter	Test Condition	Min	TYP	Мах	Unit
CLK_IN, DIF[x:0]	Input-to-Output Delay in PLL Mode Nominal Value ^{1,2,3,4}	-100	27	100	ps
CLK_IN, DIF[x:0]	Input-to-Output Delay in Bypass Mode \Nominal Value ^{2,4,5}	2.5	3.3	4.5	ns
CLK_IN, DIF[x:0]	Input-to-Output Delay Variation in PLL mode Over voltage and temperature ^{2,4,5}	-100	39	100	ps
CLK_IN, DIF[x:0]	Input-to-Output Delay Variation in Bypass Mode Over voltage and temperature ^{2,4,5}	-250	3.7	250	ps
DIF[11:0]	Output-to-Output Skew across all 12 Outputs (Common to Bypass and PLL Mode) ^{1,2,3,4,5}	0	20	50	ps
PLL Jitter Peaking	$(\overline{HBW}_BYPASS_LBW = 0)^6$	—	0.4	2.0	dB
PLL Jitter Peaking	$(\overline{HBW}\underline{BYPASS}\underline{LBW} = 1)^{6}$	_	0.1	2.5	dB
PLL Bandwidth	$(\overline{\text{HBW}}_{\text{BYPASS}}_{\text{LBW}} = 0)^7$		0.7	1.4	MHz
PLL Bandwidth	$(\overline{\text{HBW}}_{\text{BYPASS}}_{\text{LBW}} = 1)^7$		2	4	MHz

Notes:

1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the corresponding input.

- 2. Measured from differential cross-point to differential cross-point.
- 3. This parameter is deterministic for a given device.
- 4. Measured with scope averaging on to find mean value.
- 5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
- 6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
- 7. Measured at 3 db down or half power point.

Table 4. Phase Jitter

Parameter	Test Condition	Min	Тур	Мах	Unit
Phase Jitter PLL Mode	PCIe Gen 1, Common Clock ^{1,2,3}		29	86	ps
	PCIe Gen 2 Low Band, Common Clock F < 1.5 MHz ^{1,3,4,5}	_	2.0	3.0	ps (RMS)
	PCIe Gen 2 High Band, Common Clock 1.5 MHz < F < Nyquist ^{1,3,4,5}	_	1.9	3.1	ps (RMS)
	PCIe Gen 3, Common Clock (PLL BW 2–4 MHz, CDR = 10 MHz) ^{1,3,4,5}	_	0.45	1.0	ps (RMS)
	PCIe Gen 3 Separate Reference No Spread, SRNS (PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz) ^{1,3,4,5}	_	0.32	0.71	ps (RMS)
	PCIe Gen 4, Common Clock (PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz) ^{1,4,5,8}		0.45	1.0	ps (RMS)
	Intel [®] QPI & Intel SMI (4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI) ^{1,6,7}	_	0.21	0.5	ps (RMS)
	Intel QPI & Intel SMI (8 Gb/s, 100 MHz, 12 UI) ^{1,6}	_	0.13	0.3	ps (RMS)
	Intel QPI & Intel SMI (9.6 Gb/s, 100 MHz, 12 UI) ^{1,6}		0.11	0.2	ps (RMS)

Notes:

- 1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a smaller sample size have to be extrapolated to this BER target.
- **2.** ζ = 0.54 implies a jitter peaking of 3 dB.
- 3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest specification.
- 4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
- 5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
- 6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
- 7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be extrapolated to this BER target.
- 8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- 9. Download the Skyworks Solutions PCIe Clock Jitter Tool at https://www.skyworksinc.com/en/application-pages/pciexpress-learning-center.

Table 4. Phase Jitter (Continued)

Additive Phase Jitter	PCIe Gen 1 ^{1,2,3}	—	10	—	ps
Bypass Mode	PCIe Gen2 Low Band F < 1.5 MHz ^{1,3,4,5}	_	1.2		ps (RMS)
	PCIe Gen2 High Band 1.5 MHz < F < Nyquist ^{1,3,4,5}	—	1.3	_	ps (RMS)
	PCIe Gen3 (PLL BW 2–4 MHz, CDR = 10 MHz) ^{1,3,4,5}	_	0.25	_	ps (RMS)
	PCIe Gen 4, Common Clock (PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz) ^{1,4,5,8}	_	0.25		ps (RMS)
	Intel QPI & Intel® SMI (4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI) ^{1,6,7}		0.12	_	ps (RMS)
	Intel QPI & Intel® SMI (8 Gb/s, 100 MHz, 12 UI) ^{1,6}	—	0.1	_	ps (RMS)
	Intel QPI & Intel® SMI (9.6 Gb/s, 100 MHz, 12 UI) ^{1,6}	_	0.09	_	ps (RMS)

Notes:

1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a smaller sample size have to be extrapolated to this BER target.

2. ζ = 0.54 implies a jitter peaking of 3 dB.

3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest specification.

- 4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
- 5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
- 6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
- 7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be extrapolated to this BER target.
- 8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- **9.** Download the Skyworks Solutions PCIe Clock Jitter Tool at https://www.skyworksinc.com/en/application-pages/pciexpress-learning-center.

Parameter	Symbol	CLK 100 MHz, 133 MHz			Unit
		Min	Тур	Мах	
Clock Stabilization Time ²	T _{STAB}	_	1.5	1.8	ms
Long Term Accuracy ^{2,3,4}	L _{ACC}	_		100	ppm
Absolute Host CLK Period (100 MHz) ^{2,3,5}	T _{ABS}	9.94900		10.05100	ns
Absolute Host CLK Period (133 MHz) ^{2,3,5}	T _{ABS}	7.44925		7.55075	ns
Edge Rate ^{2,3,6}	Edge_rate	1.0		4.0	V/ns
Rise Time Variation ^{2,7,8}	Δ Trise	_		125	ps
Fall Time Variation ^{2,7,8}	Δ Tfall	—		125	ps
Rise/Fall Matching ^{2,7,9,10}	T _{RISE_MAT} / T _{FALL_MAT}	—		20	%
Voltage High (typ 0.7 V) ^{2,7,11}	V _{HIGH}	660		850	mV
Voltage Low (typ 0.7 V) ^{2,7,12}	V _{LOW}	-150		150	mV
Maximum Voltage ^{2,7,13,14,15}	V _{MAX}	—		1150	mV
Absolute Crossing Point Voltages ^{2,7,15,16}	Vox _{ABS}	250		550	mV
Relative Crossing Point Voltages	Vox _{REL}				
Total Variation of Vcross Over All Edges ^{2,7,17}	Total Δ Vox	_		140	mV
Duty Cycle ^{2,3}	DC	45		55	%
Maximum Voltage (Overshoot) ^{2,7,18}	V _{ovs}	_		V _{High} + 0.3	V
Maximum Voltage (Undershoot) ^{2,7,19}	V _{uds}	_		V _{Low} – 0.3	V

Table 5. DIF 0.7 V AC Timing Characteristics	(Non-Spread Spectrum Mode) ¹
--	---

Table 5. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode) ¹ (Continued)
--

Parameter	Symbol	CLK	100 MHz, 13	3 MHz	Unit
		Min	Тур	Max	
Ringback Voltage ^{2,7}	V _{rb}	0.2		N/A	V
 Notes: Unless otherwise noted, all specifications i This is the time from the valid CLK_IN inputime that stable clocks are output from the Measurement taken from differential wave Using frequency counter with the measure 99,750,00 Hz, 133,000,000 Hz. The average period over any 1 µs period of specified period. Measure taken from differential waveform –150 mV to +150 mV on the differential wave most of the dynamic wiggles along the clomonotonic through the Vol to Voh region for Measured with oscilloscope, averaging on falling edge rate (average) of CLOCK. Rise/Fall matching is derived using the fol VLow is defined as the statistical average Measured at crossing point where the inst CLK. The crossing point must meet the absolute fol Variation of maximum allowed variance in Vcross for a Overshoot is defined as the absolute value 19. Undershoot is defined as the absolute value 19. 	at clocks and the a buffer chip (PLL la form. ment interval equa- of time must be gra- on a component to veform . Scope is ck edge Only valid or Trise and Tfall. veform. , using min max sta , The difference be lowing, 2*(Trise - 1 High value as obta antaneous voltage ion from the lowes and relative cross the following, Vci igures 3-4 for furt all crossing voltage of the maximum	ssertion of the ocked). al or greater t eater than the est board. The set to averag for Rising clo atistics. Varia etween the ris fall) / (Trise - ained by using value of the t crossing point sing point spe ross(rel) Min her clarification ges of Rising em. voltage.	han 0.15 s, tar minimum and e edge (slew) r e because the ock and Falling tion is the delt sing edge rate + Tfall). g the Oscilloso g the Oscilloso g the Oscilloso g the Oscilloso g the to the highe ecifications sim = 0.250 + 0.5 (on).	nal level at 1.8– get frequencies less than the m rate is measurer scope sample of CLOCK. Signal a between min a (average) of clo cope VHigh Mat ope VLow Math CLK equals the st, regardless of nultaneously. Vhavg – 0.700)	are naximum d from clock is makin l must be and max. ck verses the h function. function. falling edge f which edge , Vcross(rel)

SSC ON			Meas	urement Wi	ndow			Units
Center Freq, MHz	1 Clock	1 µs	0.1 s	0.1 s	0.1 s	1 µs	1 Clock	
	-C-C Jitter AbsPer Min	-SSC Short Term AVG Min	-ppm Long Term AVG Min	0 ppm Period Nominal	+ppm Long Term AVG Max	+SSC Short Term AVG Max	+C-C Jitter AbsPer Max	
100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns
133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns

Table 7. Clock Periods	Differential C	lock Outputs with	SSC Enabled
		nock outputs with	

SSC ON	Measurement Window							
Center Freq, MHz	1 Clock 1 μs 0.1 s 0.1 s 1 μs					1 Clock		
	-C-C Jitter AbsPer Min	-SSC Short Term AVG Min	-ppm Long Term AVG Min	0 ppm Period Nominal	+ppm Long Term AVG Max	+SSC Short Term AVG Max	+C-C Jitter AbsPer Max	
99.75	9.94900	9.99900	10.02406	10.02506	10.02607	10.05126	10.10126	ns
133.33	7.44925	7.49925	7.51805	7.51880	7.51955	7.53845	7.58845	ns

Table 8. Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit
3.3 V Core Supply Voltage ¹	VDD/VDD_A	—	4.6	V
3.3 V I/O Supply Voltage ¹	VDD_IO	—	4.6	V
3.3 V Input High Voltage ^{1,2}	VIH		4.6	V
3.3 V Input Low Voltage ¹	VIL	-0.5	_	V
Storage Temperature ¹	t _s	-65	150	°C
Input ESD protection ³	ESD	2000	—	V
Netes	*	*	•	8

Notes:

1. Consult manufacturer regarding extended operation in excess of normal dc operating parameters.

- 2. Maximum VIH is not to exceed maximum V_{DD} .
- 3. Human body model.

2. Functional Description

2.1. CLK_IN, CLK_IN

The differential input clock is expected to be sourced from a clock synthesizer, e.g. CK420BQ, CK509B, or CK410B+.

2.2. OE and Output Enables (Control Registers)

Each output can be individually enabled or disabled by SMBus control register bits. Additionally, each output of the DIF[11:0] has a dedicated OE pin. The OE pins are asynchronous, asserted-low signals. The Output Enable bits in the SMBus registers are active high and are set to enable by default. The disabled state for the DB1200ZL NMOS push-pull output is Low/Low. Note that the logic level for assertion or deassertion is different in software than it is on hardware. This follows hardware default nomenclature for communication channels (e.g., output is enabled if the OE# pin is pulled low) and still maintains software programming logic (e.g., output is enabled if OE register is true). Table 9 is a truth table depicting enabling and disabling of outputs via hardware and software. Note that, for the output to be active, the control register bit must be a 1 *and* the OE pin must be a 0.

Note: The assertion and deassertion of this signal is absolutely asynchronous.

Inputs		OE Hardware Pins and Control Register Bits			Outputs	PLL State
PWR <u>GD/</u> PWR DN	CLK_ <u>IN/CLK</u> IN	SMBUS Enable Bit	OE Pin	DIF/DIF[11:0]	FB_ <u>OUT/</u> FB_ OUT	
0	х	х	х	Low/Low	Low/Low	OFF
		0	х	Low/Low	Running	ON
1	Running	1	0	Running	Running	ON
		1	1	Low/Low	Running	ON

Table 9. si53112-A03A-A03A Output Management

2.2.1. OE Assertion (Transition from 1 to 0)

All differential outputs that were disabled are to resume normal operation in a glitch-free manner. The latency from the assertion to active outputs is 4 to 12 DIF clock periods.

2.2.2. OE De-Assertion (Transition from 0 to 1)

The impact of deasserting \overline{OE} is that each corresponding output will transition from normal operation to disabled in a glitch-free manner. A minimum of four valid clocks will be provided after the deassertion of \overline{OE} . The maximum latency from the deassertion to disabled outputs is 12 DIF clock periods.

2.3. 100M_133M—Frequency Selection

<u>The Si53112</u>-A03A is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz. 100M_133M is a hardware input pin, which programs the appropriate output frequency of the differential outputs. Note that the CLK_IN frequency must be equal to the CLK_OUT frequency; meaning Si53112-A03A is operated in 1:1 mode only. Frequency selection can be enabled by the 100M_133M hardware pin. An external pull-up or pulldown resistor is attached to this pin to select the input/output frequency. The functionality is summarized in Table 10.

100M_133M	Optimized Frequency (CLK_IN = CLK_OUT)
0	133.33 MHz
1	100.00 MHz

Table 10. Frequency Program Table

Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.

2.4. SA_0, SA_1—Address Selection

SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the si53112-A03A-A03Asi53112-A03A-A03A. The two tri-level input pins that can configure the device to nine different addresses.

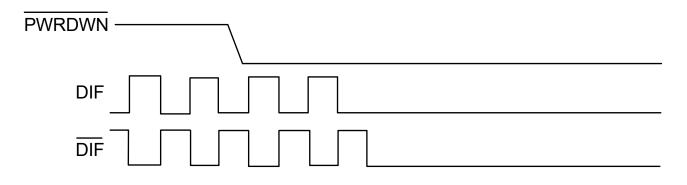
SA_1	SA_0	SMBUS Address
L	L	D8
L	М	DA
L	Н	DE
М	L	C2
М	М	C4
М	Н	C6
Н	L	СА
Н	М	CC
Н	Н	CE

Table 11. SMBUS Address Table

2.5. PWRGD/PWRDN

PWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to indicating a power down condition. PWRGD (assertion) is used by the si53112-A03A to sample initial configurations, such as frequency select condition and SA selections. After PWRGD has been asserted high for the first time, the pin becomes a PWRDN (power down) pin that can be used to shut off all clocks cleanly and instruct the device to invoke power-saving mode. PWRDN is a completely asynchronous active low input. When entering power-saving mode, PWRDN should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior to turning off the VCO. When PWRDN is deasserted high, all clocks will start and stop without any abnormal behavior and will meet all ac and dc parameters.

Note: The assertion and deassertion of PWRDN is absolutely asynchronous.


Warning: Disabling of the CLK_IN input clock prior to assertion of PWRDN is an undefined mode and not recommended. Operation in this mode may result in glitches, excessive frequency shifting, etc.

PWRGD/PWR DN	DIF	DIF
0	Low	Low
1	Normal	Normal

Table 12. PWRGD/PWRDN Functionality

2.5.1. PWRDN Assertion

When PWRDN is sampled low by two consecutive rising edges of DIF, all differential outputs must be held LOW/LOW on the next DIF high-to-low transition.

Figure 1. PWRDN Assertion

2.5.2. PWRGD Assertion

The power-up latency is to be less than 1.8 ms. This is the time from a valid CLK_IN input clock and the assertion of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs stopped in a LOW/LOW condition resulting from power down must be driven high in less than 300 µs of PWRDN deassertion to a voltage greater than 200 mV.

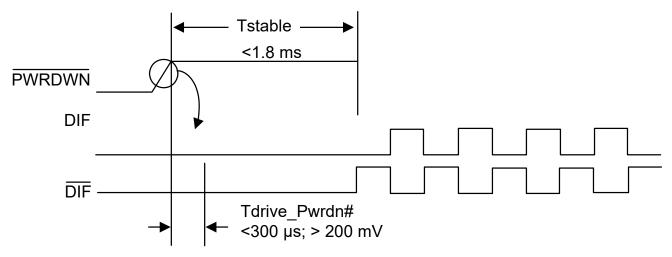


Figure 2. PWRDG Assertion (Pwrdown—Deassertion)

2.6. HBW_BYPASS_LBW

The HBW_BYPASS_LBW pin is a tri-level function input pin (refer to Table 13 for VIL_Tri, VIM_Tri, and VIH_Tri signal levels). It is used to select between PLL high-bandwidth, PLL bypass mode, or PLL low-bandwidth mode. In PLL bypass mode, the input clock is passed directly to the output stage, which may result in up to 50 ps of additive cycle-to-cycle jitter (50 ps + input jitter) on the differential outputs. In the case of PLL mode, the input clock is passed through a PLL to reduce high-frequency jitter. The PLL HBW, BYPASS, and PLL LBW modes may be selected by asserting the HBW_BYPASS_LBW input pin to the appropriate level described in Table 13.

HBW_BYPASS_LBW Pin	Mode	Byte 0, Bit 7	Byte 0, Bit 6
L	LBW	0	0
М	BYPASS	0	1
Н	HBW	1	1

 Table 13. PLL Bandwidth and Readback Table

The Si53112-A03A has the ability to override the latch value of the PLL operating mode from hardware strap pin 5 via the use of Byte 0 and bits 2 and 1. Byte 0 bit 3 must be set to 1 to allow the user to change Bits 2 and 1, affecting the PLL. Bits 7 and 6 will always read back the original latched value. A warm reset of the system will have to be accomplished if the user changes these bits.

2.7. Miscellaneous Requirements

Data Transfer Rate: 100 kbps (standard mode) is the base functionality required. Fast mode (400 kbps) functionality is optional.

Logic Levels: SMBus logic levels are based on a percentage of V_{DD} for the controller and other devices on the bus. Assume all devices are based on a 3.3 V supply.

Clock Stretching: The clock buffer must not hold/stretch the SCL or SDA lines low for more than 10 ms. Clock stretching is discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than this time puts the device in an error/time-out mode and may not be supported in all platforms. It is assumed that all data transfers can be completed as specified without the use of clock/data stretching.

General Call: It is assumed that the clock buffer will not have to respond to the "general call."

Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in Section 3 of the SMBus 2.0 specification.

Pull-Up Resistors: Any internal resistor pull-ups on the SDATA and SCLK inputs must be stated in the individual data sheet. The use of internal pull-ups on these pins of below 100 K is discouraged. Assume that the board designer will use a single external pull-up resistor for each line and that these values are in the 5–6 k Ω range. Assume one SMBus device per DIMM (serial presence detect), one SMBus controller, one clock buffer, one clock driver plus one/two more SMBus devices on the platform for capacitive loading purposes.

Input Glitch Filters: Only fast mode SMBus devices require input glitch filters to suppress bus noise. The clock buffer is specified as a standard mode device and is not required to support this feature. However, it is considered a good design practice to include the filters.

PWRDN: If a clock buffer is placed in **PWRDN** mode, the SDATA and SCLK inputs must be Tri-stated and the device must retain all programming information. IDD current due to the SMBus circuitry must be characterized and in the data sheet.

2.8. Buffer Power-Up State Machine

State	Description	
0	3.3 V buffer power is off.	
1 After 3.3 V supply is detected to rise above 1.8–2.0 V, buffer enters State 1 and initiates a 0.1–0.3 ms delay.		
2	Buffer waits for a valid clock on the CLK input and PWRDN de-assertion.	
3	Once the PLL is locked to the CLK_IN input clock, the buffer enters state 3 and enables outputs for normal operation.	
than 1 2. If power preser valid ir	tal power-up latency from power-on to all outputs active must be less .8 ms (assuming a valid clock is present on CLK_IN input). er is valid and power-down is deasserted but no input clocks are nt on the CLK_IN input, DIF clocks must remain disabled. Only after nput clocks are detected, valid power, PWRDN deasserted with the cked/stable are the DIF outputs enabled.	

Table 14. Buffer Power-Up State Machine

Figure 3. Buffer Power-Up State Diagram

3. Test and Measurement Setup

3.1. Input Edge

Input edge rate is based on single-ended measurement. This is the minimum input edge rate at which the Si53112-A03A is guaranteed to meet all performance specifications.

Frequency	Min	Мах	Unit
100 MHz	0.35	N/A	V/ns
133 MHz	0.35	N/A	V/ns

Table 15. Input Edge Rate

3.1.1. Measurement Points for Differential

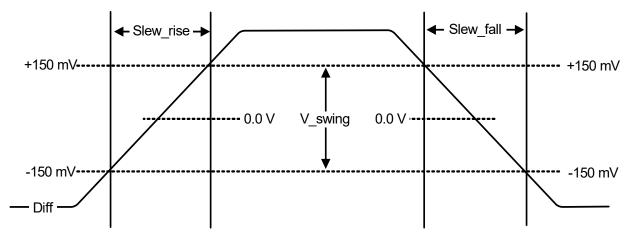


Figure 4. Measurement Points for Rise Time and Fall Time

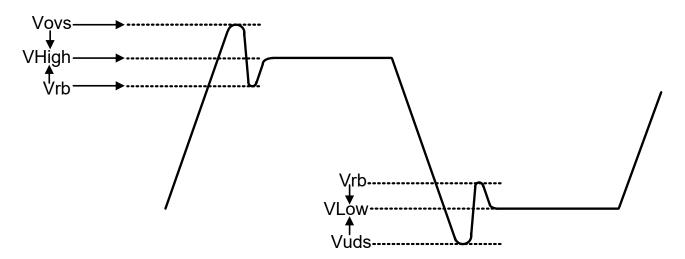


Figure 5. Single-Ended Measurement Points for V_{ovs} , V_{uds} , V_{rb}

3.2. Termination of Differential Outputs

All differential outputs are to be tested into an 85 Ω differential impedance transmission line. All output termination resistors are fully integrated into the Si53119-A03A, no external components are required. Contact Skyworks Solutions Support if 100 Ω differential impedance support is needed.

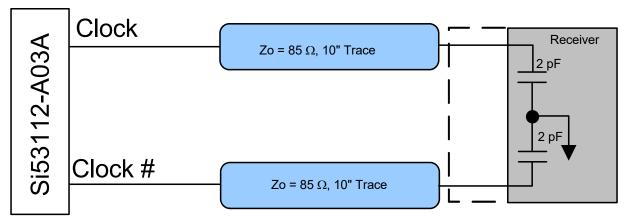


Figure 7. 0.7 V Configuration Test Load Board Termination for NMOS Push-Pull

4. Control Registers

4.1. Byte Read/Write

Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register number.

4.1.1. Byte Read

The standard byte read is as shown in Figure 8. It is an extension of the byte write. The write start condition is repeated, then the slave device starts sending data, and the master acknowledges it until the last byte is sent. The master terminates the transfer with a NAK, then a stop condition. For byte operation, the 2×7 th bit of the command byte must be set. For block operations, the 2×7 th bit must be reset. If the bit is not set, the next byte must be the byte transfer count.

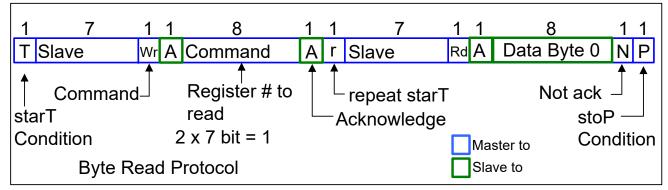


Figure 8. Byte Read Protocol

4.1.2. Byte Write

Figure 9 illustrates a simple, typical byte write. For byte operation, the 2×7 th bit of the command byte must be set. For block operations, the 2×7 th bit must be reset. If the bit is not set, the next byte must be the byte transfer count. The count can be between 1 and 32. It is not allowed to be 0 or to exceed 32.

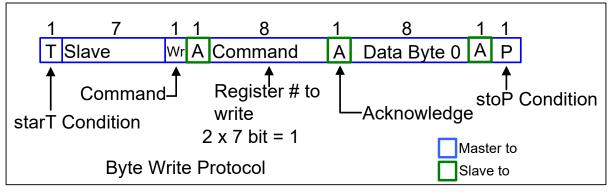


Figure 9. Byte Write Protocol

4.2. Block Read/Write

4.2.1. Block Read

After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The slave acknowledges the register index in the command byte. The master sends a repeat start function. After the slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and <33). The master acknowledges each byte except the last and sends a stop function.

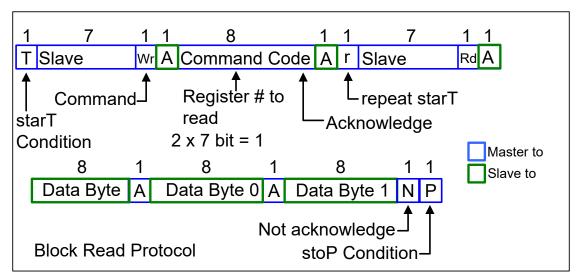
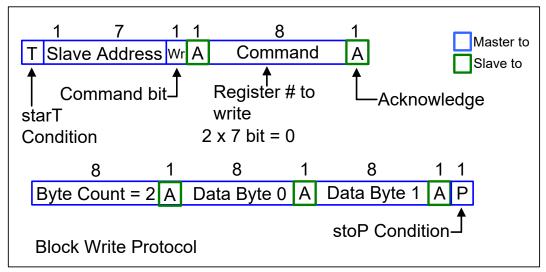



Figure 10. Block Read Protocol

4.2.2. Block Write

After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the master will transfer to the slave device. The byte count must be greater than 0 and less than 33. Following this byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop function.

4.3. Control Registers

Bit	Description	lf Bit = 0	lf Bit = 1	Туре	Default	Output(s) Affected
0	100M_133M# Frequency Select	133 MHz	100 MHz	R	Latched at power up	DIF[11:0]
1	PLL Mode 0		erating Mode	RW	1	
2	PLL Mode 1	Readback Table		RW	1	
3	PLL Software Enable	HW Latch	SMBUS Control	RW	0	
4	Reserved				0	
5	Reserved				0	
6	PLL Mode 0	See PLL Operating Mode Readback Table		R	Latched at power up	
7	PLL Mode 1	See PLL Operating Mode Readback Table		R	Latched at power up	

Note: Byte 0, bit_[3:1] are BW PLL SW enable for the DB1200ZL. Setting bit 3 to 1 allows the user to override the Latch value from pin 5 via use of bits 2 and 1. Use the values from the PLL Operating Mode Readback Table. Note that Bits 7 and 6 will keep the value originally latched on pin 5. A warm reset of the system will have to be accomplished if the user changes these bits.

Bit	Description	If Bit = 0	lf Bit = 1	Туре	Default	Output(s) Affected
0	Output Enable DIF 0	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[0]
1	Output Enable DIF 1	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[1]
2	Output Enable DIF 2	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[2]
3	Output Enable DIF 3	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[3]
4	Output Enable DIF 4	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[4]
5	Output Enable DIF 5	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[5]
6	Output Enable DIF 6	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[6]
7	Output Enable DIF 7	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[7]

Table 17. Byte 1: Output Enable Control Register

Bit	Description	lf Bit = 0	lf Bit = 1	Туре	Default	Output(s) Affected
0	Output Enable DIF 8	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[8]
1	Output Enable DIF 9	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[9]
2	Output Enable DIF 10	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[10]
3	Output Enable DIF 11	Low/Low for Si53112- A03A	Enabled	RW	1	DIF[11]
4	Reserved				0	
5	Reserved				0	
6	Reserved				0	
7	Reserved				0	

Table 18. Byte 2: Output Enable Control Register

Table 19. Byte 3: Reserved Control Register

Bit	Description	lf Bit = 0	lf Bit = 1	Туре	Default	Output(s) Affected
0	Reserved				0	
1	Reserved				0	
2	Reserved				0	
3	Reserved				0	
4	Reserved				0	
5	Reserved				0	
6	Reserved				0	
7	Reserved				0	

22 Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 3, 2021

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Reserved				0	
1	Reserved				0	
2	Reserved				0	
3	Reserved				0	
4	Reserved				0	
5	Reserved				0	
6	Reserved				0	
7	Reserved				0	

Table 20. Byte 4: Reserved Control Register

Table 21. Byte 5: Vendor/Revision Identification Control Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Default
0	Vendor ID Bit 0			R	Vendor Specific	0
1	Vendor ID Bit 1			R	Vendor Specific	0
2	Vendor ID Bit 2			R	Vendor Specific	0
3	Vendor ID Bit 3			R	Vendor Specific	1
4	Revision Code Bit 0			R	Vendor Specific	0
5	Revision Code Bit 1			R	Vendor Specific	0
6	Revision Code Bit 2			R	Vendor Specific	0
7	Revision Code Bit 3			R	Vendor Specific	0

Table 22. Byte 6: Device ID Control Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Default
0	Device ID 0			R		0
1	Device ID 1			R		0
2	Device ID 2			R		0
3	Device ID 3			R		0
4	Device ID 4			R		0
5	Device ID 5			R		0
6	Device ID 6			R		0
7	Device ID 7 (MSB)			R		0

Bit	Description	lf Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	BC0 - Writing to this register configures how many bytes will be read back			RW	0	
1	BC1 - Writing to this register configures how many bytes will be read back			RW	0	
2	BC2 - Writing to this register configures how many bytes will be read back			RW	0	
3	BC3 - Writing to this register configures how many bytes will be read back			RW	1	
4	BC4 - Writing to this register configures how many bytes will be read back			RW	0	
5	Reserved				0	
6	Reserved				0	
7	Reserved				0	

Table 23. Byte 7: Byte Count Register

5. Power Filtering Example

5.1. Ferrite Bead Power Filtering

Recommended ferrite bead filtering equivalent to the following: 600 Ω impedance at 100 MHz, \leq 0.1 Ω DCR max., \geq 400 mA current rating.

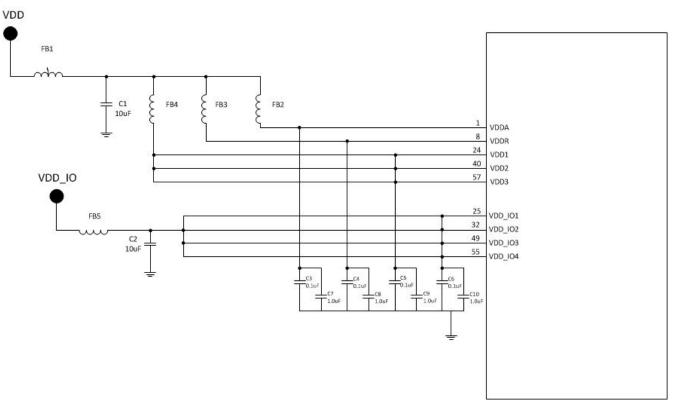
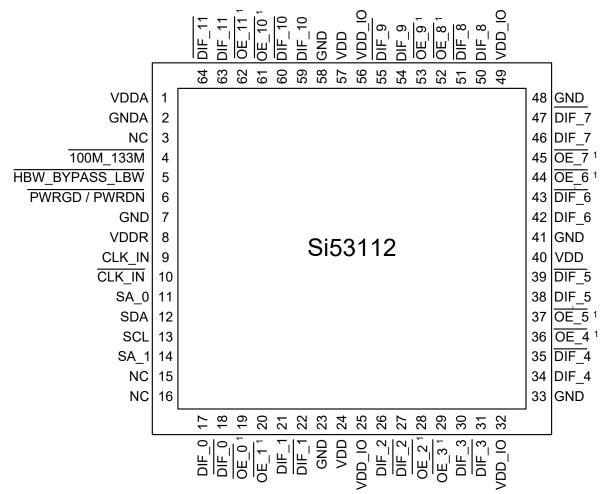



Figure 12. Schematic Example of Si53112-A03A Power Filtering

6. Pin Descriptions: 64-Pin QFN

Notes:

1) Internal 100K pull-down

26 Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 3, 2021

Table 24. si5311	2-A03A 64-Pi	in QFN Descriptions
------------------	--------------	---------------------

Pin #	Name	Туре	Description
1	VDDA	3.3 V	3.3 V power supply for PLL.
2	GNDA	GND	Ground for PLL.
3	NC	I/O	No connect.
4	100M_133M	I,SE	 3.3 V tolerant inputs for input/output frequency selection. An external pull-up or pull-down resistor is attached to this pin to select the input/output frequency. High = 100 MHz output Low = 133 MHz output
5	HBW_BYPASS_LBW	I, SE	Tri-Level input for selecting the PLL bandwidth or bypass mode. High = High BW mode Med = Bypass mode Low = Low BW mode
6	PWRGD/PWRDN	I	3.3 V LVTTL input to power up or power down the device.
7	GND	GND	Ground for outputs.
8	VDDR	VDD	3.3 V power supply for differential input receiver. This VDDR should be treated as an analog power rail and filtered appropriately.
9	CLK_IN	I, DIF	0.7 V Differential input.
10	CLK_IN	I, DIF	0.7 V Differential input.
11	SA_0	I	3.3 V LVTTL input selecting the address. Tri-level input.
12	SDA	I/O	Open collector SMBus data.
13	SCL	I/O	SMBus slave clock input.
14	SA_1	I	3.3 V LVTTL input selecting the address. Tri-level input.
15	NC	I/O	No connect. There are active signals on pin 15 and 16, do not connect anything to these pins.
16	NC	I/O	No connect. There are active signals on pin 15 and 16, do not connect anything to these pins.
17	DIF_0	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
18	DIF_0	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
19	OE_0	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
20	OE_1	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
21	DIF_1	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
22	DIF_1	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
23	GND	GND	Ground for outputs.

Pin #	Name	Туре	Description
24	VDD	3.3 V	3.3 V power supply for outputs.
25	VDD_IO	VDD	Power supply for differential outputs.
26	DIF_2	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
27	DIF_2	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
28	OE_2	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
29	OE_3	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
30	DIF_3	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
31	DIF_3	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
32	VDD_IO	VDD	Power supply for differential outputs.
33	GND	GND	Ground for outputs.
34	DIF_4	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
35	DIF_4	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
36	OE_4	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
37	OE_5	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
38	DIF_5	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
39	DIF_5	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
40	VDD	3.3 V	3.3 V power supply for outputs.
41	GND	GND	Ground for outputs.
42	DIF_6	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
43	DIF_6	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
44	OE_6	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
45	OE_7	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
46	DIF_7	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
47	DIF_7	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
48	GND	GND	Ground for outputs.
49	VDD_IO	VDD	Power supply for differential outputs.
50	DIF_8	O, DIF	0.7 V Differential clock outputs. Default is 1:1.

28 Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 3, 2021

Pin #	Name	Туре	Description
51	DIF_8	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
52	OE_8	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
53	OE_9	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
54	DIF_9	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
55	DIF_9	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
56	VDD_IO	VDD	Power supply for differential outputs.
57	VDD	3.3 V	3.3 V power supply for outputs.
58	GND	GND	Ground for outputs.
59	DIF_10	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
60	DIF_10	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
61	OE_10	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
62	OE_11	I, SE	3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down.
63	DIF_11	O, DIF	0.7 V Differential clock outputs. Default is 1:1.
64	DIF_11	O, DIF	0.7 V Differential clock outputs. Default is 1:1.

Table 24. si53112-A03A 64-Pin QFN Descriptions

7. Ordering Guide

Part Number	Package Type	Temperature			
Lead-free					
Si53112-A03AGM	64-pin QFN Extended, -40 to 85 °				
Si53112-A03AGMR	64-pin QFN—Tape and Reel	Extended, –40 to 85 °C			

30 Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 3, 2021

8. Package Outline

Figure 13 illustrates the package details for the Si53112-A03A. Table 25 lists the values for the dimensions shown in the illustration.

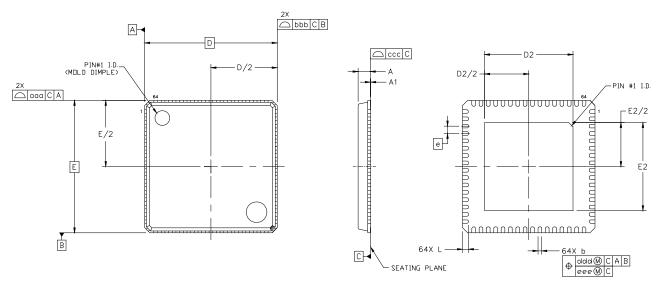


Figure 13. 64-Pin Quad Flat No Lead (QFN) Package

Dimension	Min	Nom	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	9.00 BSC.		
D2	6.00	6.10	6.20
е	0.50 BSC.		
E	9.00 BSC.		
E2	6.00	6.10	6.20
L	0.30	0.40	0.50
aaa	0.10		
bbb	0.10		
ccc	0.08		
ddd	0.10		
eee	0.05		
Notes:	-		

Table 25. Package Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-220

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Land Pattern

Figure 14 illustrates the recommended land pattern details for the Si53112-A03A in a 64-pin QFN package. Table 26 lists the values for the dimensions shown in the illustration.

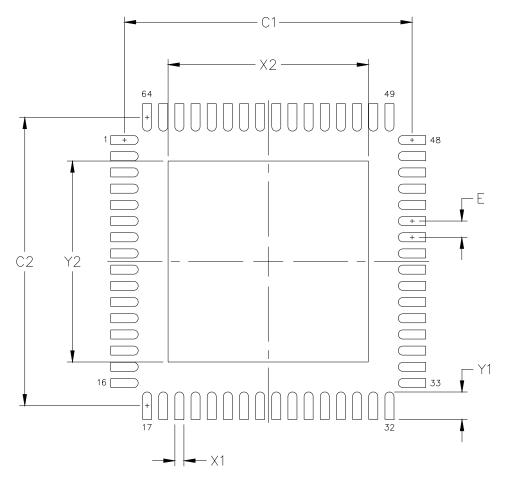


Figure 14. Land Pattern

³² Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 3, 2021

mm
8.90
8.90
0.50
0.30
0.85
6.20
6.20

Table 26. PCB Land Pattern Dimensions

Notes:

General

- **1.** All dimensions shown are in millimeters (mm).
- **2.** This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad.

Stencil Design

- **5.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125 mm (5 mils).
- 7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- **8.** A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch should be used for the center ground pad.

Card Assembly

- 9. A No-Clean, Type-3 solder paste is recommended.
- **10.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

SKYWORKS

ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!

www.skyworksinc.com/CBPro

C

Portfolio www.skyworksinc.com/ia/timing

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5[®], SkyOne[®], SkyBlue[™], Skyworks Green[™], Clockbuilder[®], DSPLL[®], ISOmodem[®], ProSLIC[®], and SiPHY[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Silicon Labs manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7