## SKYWORIS ${ }^{\circ}$

## DB1200ZL 12-Output PCIe Gen 3 Buffer

## Features

- Twelve 0.7 V low-power, pushpull, HCSL-compatible PCle Gen 3 outputs
- Individual OE HW pins for each output clock
- $100 \mathrm{MHz} / 133 \mathrm{MHz}$ PLL operation, supports PCle and QPI
- PLL bandwidth SW SMBUS programming overrides the latch value from HW pin
- 9 selectable SMBUS addresses
- SMBus address configurable to allow multiple buffers in a single control network 3.3 V supply voltage operation
- Integrated termination resistors supporting $85 \Omega$ transmission lines
- PLL or bypass mode
- Spread spectrum tolerable
- 1.05 to $3.3 \mathrm{~V} \mathrm{I/O} \mathrm{supply} \mathrm{voltage}$
- 50 ps output-to-output skew
- 50 ps cyc-cyc jitter (PLL mode)
- Low phase jitter (Intel QPI, PCle Gen 1/2/3/4 common clock compliant)
- Gen 3 SRNS Compliant
- 100 ps input-to-output delay
- Extended Temperature: -40 to $85^{\circ} \mathrm{C}$
- Package: 64-pin QFN
- For higher output devices or variations of this device, contact Skyworks Solutions


## Applications

- Server
- Storage
- Data center
- Enterprise Switches and Routers


## Description

The Si53112-A03A is a low-power, 12-output, differential clock buffer that meets all of the performance requirements of the Intel DB1200ZL specification. To reduce board space and bill of material cost, the device fully integrates all external resistors, supporting $85 \Omega$ transmission lines. The device is optimized for distributing reference clocks for Intel ${ }^{\circledR}$ QuickPath Interconnect (Intel QPI), PCle Gen 1/Gen 2/Gen 3/Gen 4, SAS, SATA, and Intel Scalable Memory Interconnect (Intel SMI) applications. The VCO of the device is optimized to support 100 MHz and 133 MHz operation. Each differential output has a dedicated hardware output enable pin for maximum flexibility and power savings. Measuring PCle clock jitter is quick and easy with the Skyworks Solutions PCle Clock Jitter Tool. Download it for free at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

## Si53112-A03A

## Functional Block Diagram



## Table of Contents

SectionPage

1. Electrical Specifications ..... 4
2. Functional Description ..... 11
2.1. CLK IN, CLK IN ..... 11
2.2. OE and Output Enables (Control Registers) ..... 11
2.3. 100M_133M—Frequency Selection ..... 11
2.4. SA_0, SA_1—Address Selection ..... 12
2.5. PWRGD/PWRDN ..... 12
2.6. HBW_BYPASS_LBW ..... 14
2.7. Miscellaneous Requirements ..... 14
2.8. Buffer Power-Up State Machine ..... 15
3. Test and Measurement Setup ..... 16
3.1. Input Edge ..... 16
3.2. Termination of Differential Outputs ..... 17
4. Control Registers ..... 18
4.1. Byte Read/Write ..... 18
4.2. Block Read/Write ..... 19
4.3. Control Registers ..... 20
5. Power Filtering Example ..... 25
5.1. Ferrite Bead Power Filtering ..... 25
6. Pin Descriptions: 64-Pin QFN ..... 26
7. Ordering Guide ..... 30
8. Package Outline ..... 31
9. Land Pattern ..... 32

## Si53112-A03A

## 1. Electrical Specifications

## Table 1. DC Operating Characteristics

$V_{D D \_A}=3.3 \mathrm{~V} \pm 5 \%, V_{D D}=3.3 \mathrm{~V} \pm 5 \%$

| Parameter | Symbol | Test Condition | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.3 V Core Supply Voltage | VDD/VDD_A | $3.3 \mathrm{~V} \pm 5 \%$ | 3.135 | 3.465 | V |
| 3.3 V I/O Supply Voltage ${ }^{1}$ | VDD_IO | 1.05 V to $3.3 \mathrm{~V} \pm 5 \%$ | 0.9975 | 3.465 | V |
| 3.3 V Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | VDD | 2.0 | VDD +0.3 | V |
| 3.3 V Input Low Voltage | $\mathrm{V}_{\mathrm{IL}}$ |  | VSS-0.3 | 0.8 | V |
| Input Leakage Current ${ }^{2}$ | ILL | $0<$ VIN < VDD | -5 | +5 | $\mu \mathrm{A}$ |
| 3.3 V Input High Voltage ${ }^{3}$ | $\mathrm{V}_{\text {IH_FS }}$ | VDD | 0.7 | VDD +0.3 | V |
| 3.3 V Input Low Voltage ${ }^{3}$ | $\mathrm{V}_{\text {IL_FS }}$ |  | VSS-0.3 | 0.35 | V |
| 3.3 V Input Low Voltage | $\mathrm{V}_{\text {IL_Tri }}$ |  | 0 | 0.8 | V |
| 3.3 V Input Med Voltage | $\mathrm{V}_{\text {IM_I }}$ Tri |  | 1.2 | 1.8 | V |
| 3.3 V Input High Voltage | $\mathrm{V}_{\mathrm{IH}_{\text {I }} \text { Tri }}$ |  | 2.2 | VDD | V |
| 3.3 V Output High Voltage ${ }^{4}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$ | 2.4 | - | V |
| 3.3 V Output Low Voltage ${ }^{4}$ | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$ | - | 0.4 | V |
| Input Capacitance ${ }^{5}$ | $\mathrm{C}_{\text {IN }}$ |  | 2.5 | 4.5 | pF |
| Output Capacitance ${ }^{5}$ | $\mathrm{C}_{\text {OUT }}$ |  | 2.5 | 4.5 | pF |
| Pin Inductance | $L_{\text {PIN }}$ |  | - | 7 | nH |
| Ambient Temperature | $\mathrm{T}_{\mathrm{A}}$ | No Airflow | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

Notes:

1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.
2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state current requirements.
3. Internal voltage reference is to be used to guarantee $\mathrm{V}_{\mathrm{IH}} \mathrm{FS}$ and $\mathrm{V}_{\mathrm{IL}}$ FS thresholds levels over full operating range.
4. Signal edge is required to be monotonic when transitioning through this region.
5. Ccomp capacitance based on pad metallization and silicon device capacitance. Not including pin capacitance.

Table 2. Current Consumption
$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; supply voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$

| Parameter | Symbol | Test Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Current | IDD ${ }_{\text {VDD }}$ | 133 MHz , VDD Rail, Zo=85 $\Omega$ | - | 18 | 25 | mA |
|  | IDD ${ }_{\text {VDDA }}$ | $\begin{aligned} & 133 \mathrm{MHz}, \mathrm{VDDA}+\mathrm{VDDR}, \text { PLL Mode, } \\ & \mathrm{Zo}=85 \Omega \end{aligned}$ | - | 17 | 20 | mA |
|  | IDD ${ }_{\text {vddio }}$ | 133 MHz, CL = Full Load, VDD IO Rail, Zo=85 $\Omega$ | - | 85 | 110 | mA |
| Power Down Current | IDD ${ }_{\text {VDDPD }}$ | Power Down, VDD Rail | - | 0.4 | 1 | mA |
|  | IDD ${ }_{\text {VDDAPD }}$ | Power Down, VDDA Rail | - | 2 | 5 | mA |
|  | IDD ${ }_{\text {VDDIIPD }}$ | Power Down, VDD_IO Rail | - | 0.2 | 0.5 | mA |

Table 3. Output Skew, PLL Bandwidth and Peaking
$T_{A}=-40$ to $85^{\circ} \mathrm{C}$; supply voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$

| Parameter | Test Condition | Min | TYP | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| CLK_IN, DIF[x:0] | Input-to-Output Delay in PLL Mode <br> Nominal Value ${ }^{1,2,3,4}$ | -100 | 27 | 100 | ps |
| CLK_IN, DIF[x:0] | Input-to-Output Delay in Bypass Mode <br>  <br> (Nominal Value $2,4,5$ | 2.5 | 3.3 | 4.5 | ns |
| CLK_IN, DIF[x:0] | Input-to-Output Delay Variation in PLL mode <br> Over voltage and temperature ${ }^{2,4,5}$ | -100 | 39 | 100 | ps |
| CLK_IN, DIF[x:0] | Input-to-Output Delay Variation in Bypass Mode <br> Over voltage and temperature ${ }^{2,4,5}$ | -250 | 3.7 | 250 | ps |
| DIF[11:0] | Output-to-Output Skew across all 12 Outputs <br> $(\text { Common to Bypass and PLL Mode) })^{1,2,3,4,5}$ | 0 | 20 | 50 | ps |
| PLL Jitter Peaking | $\left(\overline{\text { HBW_BYPASS_LBW }=0)^{6}}\right.$ | - | 0.4 | 2.0 | dB |
| PLL Jitter Peaking | $(\overline{\text { HBW_BYPASS_LBW }}=1)^{6}$ | - | 0.1 | 2.5 | dB |
| PLL Bandwidth | $(\overline{\text { HBW_BYPASS_LBW }}=0)^{7}$ | - | 0.7 | 1.4 | MHz |
| PLL Bandwidth | $(\overline{\text { HBW_BYPASS_LBW }}=1)^{7}$ | - | 2 | 4 | MHz |

Notes:

1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the corresponding input.
2. Measured from differential cross-point to differential cross-point.
3. This parameter is deterministic for a given device.
4. Measured with scope averaging on to find mean value.
5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
7. Measured at 3 db down or half power point.

Table 4. Phase Jitter

| Parameter | Test Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Jitter PLL Mode | PCle Gen 1, Common Clock ${ }^{1,2,3}$ | - | 29 | 86 | ps |
|  | PCle Gen 2 Low Band, Common Clock $\mathrm{F}<1.5 \mathrm{MHz}^{1,3,4,5}$ | - | 2.0 | 3.0 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | PCle Gen 2 High Band, Common Clock $\text { 1.5 MHz }<\mathrm{F}<\text { Nyquist }^{1,3,4,5}$ | - | 1.9 | 3.1 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | PCle Gen 3, Common Clock <br> (PLL BW 2-4 MHz, CDR $=10 \mathrm{MHz})^{1,3,4,5}$ | - | 0.45 | 1.0 | $\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$ |
|  | PCle Gen 3 Separate Reference No Spread, SRNS $(\text { PLL BW of } 2-4 \text { or } 2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})^{1,3,4,5}$ | - | 0.32 | 0.71 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | PCle Gen 4, Common Clock <br> (PLL BW of $2-4$ or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})^{1,4,5,8}$ | - | 0.45 | 1.0 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | Intel ${ }^{\circledR}$ QPI \& Intel SMI <br> (4.8 Gbps or $6.4 \mathrm{~Gb} / \mathrm{s}, 100$ or $133 \mathrm{MHz}, 12 \mathrm{UI})^{1,6,7}$ | - | 0.21 | 0.5 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | Intel QPI \& Intel SMI <br> $(8 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI})^{1,6}$ | - | 0.13 | 0.3 | $\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$ |
|  | Intel QPI \& Intel SMI $(9.6 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI})^{1,6}$ | - | 0.11 | 0.2 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |

## Notes:

1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a smaller sample size have to be extrapolated to this BER target.
2. $\zeta=0.54$ implies a jitter peaking of 3 dB .
3. PCle* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest specification.
4. Measured on 100 MHz PCle output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
6. Measured on $100 \mathrm{MHz}, 133 \mathrm{MHz}$ output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
7. These jitter numbers are defined for a BER of $1 \mathrm{E}-12$. Measured numbers at a smaller sample size have to be extrapolated to this BER target.
8. Gen 4 specifications based on the $\mathrm{PCl}-$ Express Base Specification 4.0 rev. 0.5.
9. Download the Skyworks Solutions PCle Clock Jitter Tool at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Table 4. Phase Jitter (Continued)

| Additive Phase Jitter Bypass Mode | PCle Gen $1^{1,2,3}$ | - | 10 | - | ps |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PCle Gen2 Low Band $\mathrm{F}<1.5 \mathrm{MHz}^{1,3,4,5}$ | - | 1.2 | - | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | PCle Gen2 High Band 1.5 MHz < F < Nyquist ${ }^{1,3,4,5}$ | - | 1.3 | - | $\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$ |
|  | PCle Gen3 <br> (PLL BW 2-4 MHz, CDR $=10 \mathrm{MHz})^{1,3,4,5}$ | - | 0.25 | - | $\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$ |
|  | PCle Gen 4, Common Clock <br> (PLL BW of 2-4 or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})^{1,4,5,8}$ | - | 0.25 | - | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | Intel QPI \& Intel® SMI <br> (4.8 Gbps or $6.4 \mathrm{~Gb} / \mathrm{s}, 100$ or $133 \mathrm{MHz}, 12 \mathrm{UI})^{1,6,7}$ | - | 0.12 | - | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
|  | $\begin{gathered} \text { Intel QPI \& Intel® SMI } \\ (8 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI})^{1,6} \end{gathered}$ | - | 0.1 | - | $\begin{gathered} \text { ps } \\ (\mathrm{RMS}) \end{gathered}$ |
|  | Intel QPI \& Intel® SMI $(9.6 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI})^{1,6}$ | - | 0.09 | - | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
| Notes: |  |  |  |  |  |
| 1. Post processed smaller sample <br> 2. $\zeta=0.54$ implies <br> 3. PCle * Gen 3 filte | 1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a smaller sample size have to be extrapolated to this BER target. |  |  |  | es at a |
| 3. PCle* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest specification. |  |  |  |  |  |
| 4. Measured on $100 \mathrm{MHz} \mathrm{PCle} \mathrm{output} \mathrm{using} \mathrm{the} \mathrm{template} \mathrm{file} \mathrm{in} \mathrm{the} \mathrm{Intel-supplied} \mathrm{Clock} \mathrm{Jitter} \mathrm{Tool} \mathrm{V1.6.3}$. |  |  |  |  |  |
| 6. Measured on $100 \mathrm{MHz}, 133 \mathrm{MHz}$ output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3. |  |  |  |  |  |
| 7. These jitter numbers are defined for a BER of $1 \mathrm{E}-12$. Measured numbers at a smaller sample size have to be extrapolated to this BER target. |  |  |  |  |  |
| 8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5 . |  |  |  |  |  |
| 9. Download the Skyworks Solutions PCle Clock Jitter Tool at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center. |  |  |  |  |  |

## Si53112-A03A

Table 5. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode) ${ }^{1}$

| Parameter | Symbol | CLK 100 MHz , 133 MHz |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Clock Stabilization Time ${ }^{2}$ | $\mathrm{T}_{\text {STAB }}$ | - | 1.5 | 1.8 | ms |
| Long Term Accuracy ${ }^{2,3,4}$ | $\mathrm{L}_{\text {ACC }}$ | - |  | 100 | ppm |
| Absolute Host CLK Period ( 100 MHz$)^{2,3,5}$ | $\mathrm{T}_{\text {ABS }}$ | 9.94900 |  | 10.05100 | ns |
| Absolute Host CLK Period ( 133 MHz$)^{2,3,5}$ | $\mathrm{T}_{\text {ABS }}$ | 7.44925 |  | 7.55075 | ns |
| Edge Rate ${ }^{2,3,6}$ | Edge_rate | 1.0 |  | 4.0 | V/ns |
| Rise Time Variation ${ }^{2,7,8}$ | $\Delta$ Trise | - |  | 125 | ps |
| Fall Time Variation ${ }^{2,7,8}$ | $\Delta$ Tfall | - |  | 125 | ps |
| Rise/Fall Matching ${ }^{\text {2,7,9,10 }}$ | TRISEMAT $/$ <br> T ${ }_{\text {FALL_MAT }}$ | - |  | 20 | \% |
| Voltage High (typ 0.7 V$)^{2,7,11}$ | $\mathrm{V}_{\text {HIGH }}$ | 660 |  | 850 | mV |
| Voltage Low (typ 0.7 V) ${ }^{2,7,12}$ | V Low | -150 |  | 150 | mV |
| Maximum Voltage ${ }^{\text {2,7,13,14,15 }}$ | $\mathrm{V}_{\text {MAX }}$ | - |  | 1150 | mV |
| Absolute Crossing Point Voltages ${ }^{2,7,15,16}$ | $\mathrm{Vox}_{\text {ABS }}$ | 250 |  | 550 | mV |
| Relative Crossing Point Voltages | $V^{\text {Vox }}$ Rel |  |  |  |  |
| Total Variation of Vcross Over All Edges ${ }^{2,7,17}$ | Total $\Delta$ Vox | - |  | 140 | mV |
| Duty Cycle ${ }^{2,3}$ | DC | 45 |  | 55 | \% |
| Maximum Voltage (Overshoot) ${ }^{2,7,18}$ | $V_{\text {ovs }}$ | - |  | $\mathrm{V}_{\text {High }}+0.3$ | V |
| Maximum Voltage (Undershoot) ${ }^{\text {2,7,19 }}$ | $\mathrm{V}_{\text {uds }}$ | - |  | $\mathrm{V}_{\text {Low }}-0.3$ | V |

Table 5. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode) ${ }^{1}$ (Continued)

| Parameter | Symbol | CLK 100 MHz , 133 MHz |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Ringback Voltage ${ }^{2,7}$ | $V_{\text {rb }}$ | 0.2 |  | N/A | V |

## Notes:

1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at $1.8-2.0 \mathrm{~V}$ to the time that stable clocks are output from the buffer chip (PLL locked).
3. Measurement taken from differential waveform.
4. Using frequency counter with the measurement interval equal or greater than 0.15 s , target frequencies are $99,750,00 \mathrm{~Hz}, 133,000,000 \mathrm{~Hz}$.
5. The average period over any $1 \mu \mathrm{~s}$ period of time must be greater than the minimum and less than the maximum specified period.
6. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from -150 mV to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making most of the dynamic wiggles along the clock edge Only valid for Rising clock and Falling CLOCK. Signal must be monotonic through the Vol to Voh region for Trise and Tfall.
7. Measurement taken from single-ended waveform.
8. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.
9. Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of clock verses the falling edge rate (average) of CLOCK.
10. Rise/Fall matching is derived using the following, $2^{*}$ (Trise - Tfall) / (Trise + Tfall).
11. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.
12. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.
13. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of $\overline{\text { CLK. }}$
14. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing.
15. The crossing point must meet the absolute and relative crossing point specifications simultaneously.
16. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min $=0.250+0.5$ (Vhavg -0.700 ), Vcross(rel) Max $=0.550-0.5$ ( 0.700 - Vhavg), (see Figures 3-4 for further clarification).
17. $\Delta$ Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling $\overline{\text { CLOCK }}$. This is the maximum allowed variance in Vcross for any particular system.
18. Overshoot is defined as the absolute value of the maximum voltage.
19. Undershoot is defined as the absolute value of the minimum voltage.

## Si53112-A03A

Table 6. Clock Periods Differential Clock Outputs with SSC Disabled

| SSC ON <br> Center <br> Freq, MHz | Measurement Window |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Clock | $1 \mu \mathrm{~s}$ | 0.1 s | 0.1 s | 0.1 s | $1 \mu \mathrm{~s}$ | 1 Clock |  |
|  | -C-C Jitter AbsPer Min | -SSC <br> Short Term AVG Min | -ppm <br> Long Term AVG Min | 0 ppm <br> Period <br> Nominal | +ppm <br> Long Term AVG Max | +SSC <br> Short <br> Term AVG <br> Max | $+C-C$ <br> Jitter <br> AbsPer Max |  |
| 100.00 | 9.94900 |  | 9.99900 | 10.00000 | 10.00100 |  | 10.05100 | ns |
| 133.33 | 7.44925 |  | 7.49925 | 7.50000 | 7.50075 |  | 7.55075 | ns |

Table 7. Clock Periods Differential Clock Outputs with SSC Enabled

| SSC ON <br> Center <br> Freq, MHz | Measurement Window |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Clock | $1 \mu \mathrm{~s}$ | 0.1 s | 0.1 s | 0.1 s | $1 \mu \mathrm{~s}$ | 1 Clock |  |
|  | -C-C Jitter AbsPer Min | $\begin{gathered} \text {-SSC } \\ \text { Short } \\ \text { Term AVG } \\ \text { Min } \end{gathered}$ | -ppm <br> Long Term AVG Min | 0 ppm <br> Period <br> Nominal | +ppm <br> Long Term AVG Max | +SSC <br> Short <br> Term AVG <br> Max | $+\mathrm{C}-\mathrm{C}$ <br> Jitter <br> AbsPer Max |  |
| 99.75 | 9.94900 | 9.99900 | 10.02406 | 10.02506 | 10.02607 | 10.05126 | 10.10126 | ns |
| 133.33 | 7.44925 | 7.49925 | 7.51805 | 7.51880 | 7.51955 | 7.53845 | 7.58845 | ns |

Table 8. Absolute Maximum Ratings

| Parameter | Symbol | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| 3.3 V Core Supply Voltage ${ }^{1}$ | VDD/VDD_A | - | 4.6 | V |
| 3.3 V I/O Supply Voltage ${ }^{1}$ | VDD_IO | - | 4.6 | V |
| 3.3 V Input High Voltage ${ }^{1,2}$ | VIH | - | 4.6 | V |
| 3.3 V Input Low Voltage ${ }^{1}$ | VIL | -0.5 | - | V |
| Storage Temperature ${ }^{1}$ | $t_{s}$ | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Input ESD protection ${ }^{3}$ | ESD | 2000 | - | V |

## Notes:

1. Consult manufacturer regarding extended operation in excess of normal dc operating parameters.
2. Maximum VIH is not to exceed maximum $\mathrm{V}_{\mathrm{DD}}$.
3. Human body model.

## 2. Functional Description

### 2.1. CLK_IN, CLK_IN

The differential input clock is expected to be sourced from a clock synthesizer, e.g. CK420BQ, CK509B, or CK410B+.

## 2.2. $\overline{\mathrm{OE}}$ and Output Enables (Control Registers)

Each output can be individually enabled or disabled by SMBus control register bits. Additionally, each output of the DIF[11:0] has a dedicated $\overline{\mathrm{OE}}$ pin. The $\overline{\mathrm{OE}}$ pins are asynchronous, asserted-low signals. The Output Enable bits in the SMBus registers are active high and are set to enable by default. The disabled state for the DB1200ZL NMOS push-pull output is Low/Low. Note that the logic level for assertion or deassertion is different in software than it is on hardware. This follows hardware default nomenclature for communication channels (e.g., output is enabled if the OE\# pin is pulled low) and still maintains software programming logic (e.g., output is enabled if OE register is true). Table 9 is a truth table depicting enabling and disabling of outputs via hardware and software. Note that, for the output to be active, the control register bit must be a 1 and the $\overline{\mathrm{OE}}$ pin must be a 0.
Note: The assertion and deassertion of this signal is absolutely asynchronous.
Table 9. si53112-A03A-A03A Output Management

| Inputs |  | $\overline{\text { OE Hardware Pins and Control Register Bits }}$ |  |  | Outputs | PLL State |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\mathrm{PWRGD}}{\overline{\mathrm{DN}}} \overline{\mathrm{PWR}}$ | $\text { CLK_IN/ } \overline{\text { IN }}$ | SMBUS <br> Enable Bit | $\overline{\mathrm{OE}}$ Pin | DIF/DIF[11:0] | FB_OUT/FB_ |  |
| 0 | x | x | x | Low/Low | Low/Low | OFF |
| 1 | Running | 0 | x | Low/Low | Running | ON |
|  |  | 1 | 0 | Running | Running | ON |
|  |  | 1 | 1 | Low/Low | Running | ON |

### 2.2.1. $\overline{\mathrm{OE}}$ Assertion (Transition from 1 to 0 )

All differential outputs that were disabled are to resume normal operation in a glitch-free manner. The latency from the assertion to active outputs is 4 to 12 DIF clock periods.

### 2.2.2. $\overline{\mathrm{OE}}$ De-Assertion (Transition from 0 to 1)

The impact of deasserting $\overline{\mathrm{OE}}$ is that each corresponding output will transition from normal operation to disabled in a glitch-free manner. A minimum of four valid clocks will be provided after the deassertion of $\overline{O E}$. The maximum latency from the deassertion to disabled outputs is 12 DIF clock periods.

### 2.3. 100M_133M—Frequency Selection

The Si53112-A03A is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz . $\overline{100 \mathrm{M}} 133 \mathrm{M}$ is a hardware input pin, which programs the appropriate output frequency of the differential outputs. Note that the CLK_IN frequency must be equal to the CLK_OUT frequency; meaning Si53112-A03A is operated in $1: 1$ mode only. Frequency selection can be enabled by the $100 \mathrm{M} \_133 \mathrm{M}$ hardware pin. An external pull-up or pulldown resistor is attached to this pin to select the input/output frequency. The functionality is summarized in Table 10.

Table 10. Frequency Program Table

| $\overline{\text { 100M_133M }}$ | Optimized Frequency (CLK_IN = CLK_OUT) |
| :---: | :---: |
| 0 | 133.33 MHz |
| 1 | 100.00 MHz |

Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.

### 2.4. SA_0, SA_1—Address Selection

SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the si53112-A03A-A03Asi53112-A03A-A03A. The two tri-level input pins that can configure the device to nine different addresses.

Table 11. SMBUS Address Table

| SA_1 | SA_0 | SMBUS Address |
| :---: | :---: | :---: |
| L | L | D8 |
| L | M | DA |
| L | H | DE |
| M | L | C2 |
| M | M | C4 |
| M | H | C6 |
| H | L | CA |
| H | M | CC |

### 2.5. PWRGD/PWRDN

PWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to indicating a power down condition. PWRGD (assertion) is used by the si53112-A03A to sample initial configurations, such as frequency select condition and SA selections. After PWRGD has been asserted high for the first time, the pin becomes a PWRDN (power down) pin that can be used to shut off all clocks cleanly and instruct the device to invoke power-saving mode. $\overline{\text { PWRDN }}$ is a completely asynchronous active low input. When entering power-saving mode, PWRDN should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior to turning off the VCO. When PWRDN is deasserted high, all clocks will start and stop without any abnormal behavior and will meet all ac and dc parameters.
Note: The assertion and deassertion of $\overline{\text { PWRDN }}$ is absolutely asynchronous.
Warning: Disabling of the CLK_IN input clock prior to assertion of $\overline{\text { PWRDN }}$ is an undefined mode and not recommended. Operation in this mode may result in glitches, excessive frequency shifting, etc.

Table 12. PWRGD/PWRDN Functionality

| PWRGD/ $\overline{\text { DN }}$ | DIF | $\overline{\text { DIF }}$ |
| :---: | :---: | :---: |
| 0 | Low | Low |
| 1 | Normal | Normal |

### 2.5.1. PWRDN Assertion

When PWRDN is sampled low by two consecutive rising edges of $\overline{\text { DIF }}$, all differential outputs must be held LOW/LOW on the next DIF high-to-low transition.


Figure 1. PWRDN Assertion

### 2.5.2. PWRGD Assertion

The power-up latency is to be less than 1.8 ms . This is the time from a valid CLK_IN input clock and the assertion of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs stopped in a LOW/LOW condition resulting from power down must be driven high in less than $300 \mu$ s of PWRDN deassertion to a voltage greater than 200 mV .


Figure 2. PWRDG Assertion (Pwrdown—Deassertion)

### 2.6. HBW_BYPASS_LBW

The $\overline{\text { HBW_BYPASS_LBW }}$ pin is a tri-level function input pin (refer to Table 13 for VIL_Tri, VIM_Tri, and VIH_Tri signal levels). It is used to select between PLL high-bandwidth, PLL bypass mode, or PLL low-bandwidth mode. In PLL bypass mode, the input clock is passed directly to the output stage, which may result in up to 50 ps of additive cycle-to-cycle jitter ( 50 ps + input jitter) on the differential outputs. In the case of PLL mode, the input clock is passed through a PLL to reduce high-frequency jitter. The PLL HBW, BYPASS, and PLL LBW modes may be selected by asserting the HBW_BYPASS_LBW input pin to the appropriate level described in Table 13.

Table 13. PLL Bandwidth and Readback Table

| HBW_BYPASS_LBW Pin | Mode | Byte 0, Bit 7 | Byte 0, Bit 6 |
| :---: | :---: | :---: | :---: |
| L | LBW | 0 | 0 |
| M | BYPASS | 0 | 1 |
| $H$ | HBW | 1 | 1 |

The Si53112-A03A has the ability to override the latch value of the PLL operating mode from hardware strap pin 5 via the use of Byte 0 and bits 2 and 1 . Byte 0 bit 3 must be set to 1 to allow the user to change Bits 2 and 1 , affecting the PLL. Bits 7 and 6 will always read back the original latched value. A warm reset of the system will have to be accomplished if the user changes these bits.

### 2.7. Miscellaneous Requirements

Data Transfer Rate: 100 kbps (standard mode) is the base functionality required. Fast mode (400 kbps) functionality is optional.
Logic Levels: SMBus logic levels are based on a percentage of $V_{D D}$ for the controller and other devices on the bus. Assume all devices are based on a 3.3 V supply.
Clock Stretching: The clock buffer must not hold/stretch the SCL or SDA lines low for more than 10 ms. Clock stretching is discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than this time puts the device in an error/time-out mode and may not be supported in all platforms. It is assumed that all data transfers can be completed as specified without the use of clock/data stretching.

General Call: It is assumed that the clock buffer will not have to respond to the "general call."
Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in Section 3 of the SMBus 2.0 specification.
Pull-Up Resistors: Any internal resistor pull-ups on the SDATA and SCLK inputs must be stated in the individual data sheet. The use of internal pull-ups on these pins of below 100 K is discouraged. Assume that the board designer will use a single external pull-up resistor for each line and that these values are in the $5-6 \mathrm{k} \Omega$ range. Assume one SMBus device per DIMM (serial presence detect), one SMBus controller, one clock buffer, one clock driver plus one/two more SMBus devices on the platform for capacitive loading purposes.
Input Glitch Filters: Only fast mode SMBus devices require input glitch filters to suppress bus noise. The clock buffer is specified as a standard mode device and is not required to support this feature. However, it is considered a good design practice to include the filters.
$\overline{\text { PWRDN: If a clock buffer is placed in PWRDN mode, the SDATA and SCLK inputs must be Tri-stated and the }}$ device must retain all programming information. IDD current due to the SMBus circuitry must be characterized and in the data sheet.

### 2.8. Buffer Power-Up State Machine

Table 14. Buffer Power-Up State Machine

| State | Description |
| :---: | :--- |
| 0 | 3.3 V buffer power is off. |
| 1 | After 3.3 V supply is detected to rise above $1.8-2.0 \mathrm{~V}$, the <br> buffer enters State 1 and initiates a $0.1-0.3$ ms delay. |
| 2 | Buffer waits for a valid clock on the CLK input and PWRDN <br> de-assertion. |
| 3 | Once the PLL is locked to the CLK_IN input clock, the buffer <br> enters state 3 and enables outputs for normal operation. |
| Notes: <br> 1. |  |
| The total power-up latency from power-on to all outputs active must be less <br> than 1.8 ms (assuming a valid clock is present on CLK_IN input). <br> 2. If power is valid and power-down is deasserted but no input clocks are <br> present on the CLK_N input, DIF clocks must remain disabled. Only after <br> valid input clocks are detected, valid power, PWRDN deasserted with the <br> PLL locked/stable are the DIF outputs enabled. |  |



Figure 3. Buffer Power-Up State Diagram

## Si53112-A03A

## 3. Test and Measurement Setup

### 3.1. Input Edge

Input edge rate is based on single-ended measurement. This is the minimum input edge rate at which the Si53112A03A is guaranteed to meet all performance specifications.

Table 15. Input Edge Rate

| Frequency | Min | Max | Unit |
| :---: | :---: | :---: | :---: |
| 100 MHz | 0.35 | $\mathrm{~N} / \mathrm{A}$ | V/ns |
| 133 MHz | 0.35 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{V} / \mathrm{ns}$ |

3.1.1. Measurement Points for Differential


Figure 4. Measurement Points for Rise Time and Fall Time


Figure 5. Single-Ended Measurement Points for $\mathbf{V}_{\text {ovs }}, \mathrm{V}_{\mathrm{uds}}, \mathrm{V}_{\mathrm{rb}}$


Figure 6. Differential (CLOCK-CLOCK) Measurement Points ( $T_{\text {period }}$, Duty Cycle, Jitter)

### 3.2. Termination of Differential Outputs

All differential outputs are to be tested into an $85 \Omega$ differential impedance transmission line. All output termination resistors are fully integrated into the Si53119-A03A, no external components are required. Contact Skyworks Solutions Support if $100 \Omega$ differential impedance support is needed.


Figure 7. 0.7 V Configuration Test Load Board Termination for NMOS Push-Pull

## Si53112-A03A

## 4. Control Registers

### 4.1. Byte Read/Write

Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register number.

### 4.1.1. Byte Read

The standard byte read is as shown in Figure 8. It is an extension of the byte write. The write start condition is repeated, then the slave device starts sending data, and the master acknowledges it until the last byte is sent. The master terminates the transfer with a NAK, then a stop condition. For byte operation, the $2 \times 7$ th bit of the command byte must be set. For block operations, the $2 \times 7$ th bit must be reset. If the bit is not set, the next byte must be the byte transfer count.


Figure 8. Byte Read Protocol

### 4.1.2. Byte Write

Figure 9 illustrates a simple, typical byte write. For byte operation, the $2 \times 7$ th bit of the command byte must be set. For block operations, the $2 \times 7$ th bit must be reset. If the bit is not set, the next byte must be the byte transfer count. The count can be between 1 and 32 . It is not allowed to be 0 or to exceed 32 .


Figure 9. Byte Write Protocol

### 4.2. Block Read/Write

### 4.2.1. Block Read

After the slave address is sent with the R/W condition bit set, the command byte is sent with the $M S B=0$. The slave acknowledges the register index in the command byte. The master sends a repeat start function. After the slave acknowledges this, the slave sends the number of bytes it wants to transfer ( $>0$ and $<33$ ). The master acknowledges each byte except the last and sends a stop function.


Figure 10. Block Read Protocol

### 4.2.2. Block Write

After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB $=0$. The lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the master will transfer to the slave device. The byte count must be greater than 0 and less than 33 . Following this byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop function.


Figure 11. Block Write Protocol

### 4.3. Control Registers

Table 16. Byte 0: Frequency Select, Output Enable, PLL Mode Control Register

| Bit | Description | If $\mathrm{Bit}=0$ | If $\operatorname{Bit}=1$ | Type | Default | Output(s) <br> Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 100M_133M\# Frequency Select | 133 MHz | 100 MHz | R | Latched at power up | DIF[11:0] |
| 1 | PLL Mode 0 | See PLL Operating Mode Readback Table |  | RW | 1 |  |
| 2 | PLL Mode 1 |  |  | RW | 1 |  |
| 3 | PLL Software Enable | HW Latch | SMBUS Control | RW | 0 |  |
| 4 | Reserved |  |  |  | 0 |  |
| 5 | Reserved |  |  |  | 0 |  |
| 6 | PLL Mode 0 | See PLL Operating Mode Readback Table |  | R | Latched at power up |  |
| 7 | PLL Mode 1 | See PLL Operating Mode Readback Table |  | R | Latched at power up |  |

Note: Byte 0 , bit_[3:1] are BW PLL SW enable for the DB1200ZL. Setting bit 3 to 1 allows the user to override the Latch value from pin 5 via use of bits 2 and 1. Use the values from the PLL Operating Mode Readback Table. Note that Bits 7 and 6 will keep the value originally latched on pin 5 . A warm reset of the system will have to be accomplished if the user changes these bits.

Table 17. Byte 1: Output Enable Control Register

| Bit | Description | If Bit = 0 | If Bit = 1 | Type | Default | Output(s) <br> Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Output Enable DIF 0 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[0] |
| 1 | Output Enable DIF 1 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[1] |
| 2 | Output Enable DIF 2 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[2] |
| 3 | Output Enable DIF 3 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[3] |
| 4 | Output Enable DIF 4 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[4] |
| 5 | Output Enable DIF 5 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[5] |
| 7 | Output Enable DIF 6 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[6] |
| 7 | Output Enable DIF 7 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[7] |

Table 18. Byte 2: Output Enable Control Register

| Bit | Description | If Bit = 0 | If Bit = 1 | Type | Default | Output(s) <br> Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Output Enable DIF 8 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[8] |
| 1 | Output Enable DIF 9 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[9] |
| 2 | Output Enable DIF 10 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[10] |
| 3 | Output Enable DIF 11 | Low/Low for <br> Si53112- <br> A03A | Enabled | RW | 1 | DIF[11] |
| 4 | Reserved |  |  |  | 0 |  |
| 5 | Reserved |  |  |  | 0 |  |
| 6 | Reserved |  |  |  | 0 |  |
| 7 | Reserved |  |  |  | 0 |  |

Table 19. Byte 3: Reserved Control Register

| Bit | Description | If Bit = 0 | If Bit = 1 | Type | Default | Output(s) <br> Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Reserved |  |  |  | 0 |  |
| 1 | Reserved | Reserved |  |  |  | 0 |
| 2 | Reserved | Reserved |  |  |  | 0 |
| 3 | Reserved | Reserved |  |  |  | 0 |
| 4 | Reserved |  |  |  | 0 |  |
| 5 |  |  |  |  | 0 |  |
| 7 |  |  |  |  | 0 |  |

Table 20. Byte 4: Reserved Control Register

| Bit | Description | If Bit = 0 | If Bit = 1 | Type | Default | Output(s) <br> Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Reserved |  |  |  | 0 |  |
| 1 | Reserved |  |  |  | 0 |  |
| 2 | Reserved |  |  |  | 0 |  |
| 3 | Reserved |  |  |  | 0 |  |
| 4 | Reserved |  |  |  | 0 |  |
| 5 | Reserved |  |  |  | 0 |  |
| 6 | Reserved |  |  |  | 0 |  |
| 7 | Reserved |  |  |  | 0 |  |

Table 21. Byte 5: Vendor/Revision Identification Control Register

| Bit | Description | If Bit = 0 | If Bit = 1 | Type | Default | Default |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Vendor ID Bit 0 |  |  | $R$ | Vendor Specific | 0 |
| 1 | Vendor ID Bit 1 |  |  | R | Vendor Specific | 0 |
| 2 | Vendor ID Bit 2 |  |  | R | Vendor Specific | 0 |
| 3 | Vendor ID Bit 3 |  |  | R | Vendor Specific | 1 |
| 4 | Revision Code Bit 0 |  |  | R | Vendor Specific | 0 |
| 5 | Revision Code Bit 1 |  |  | R | Vendor Specific | 0 |
| 6 | Revision Code Bit 2 |  |  | R | Vendor Specific | 0 |
| 7 | Revision Code Bit 3 |  |  | R | Vendor Specific | 0 |

Table 22. Byte 6: Device ID Control Register

| Bit | Description | If Bit = 0 | If Bit = 1 | Type | Default | Default |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Device ID 0 |  |  | R |  | 0 |
| 1 | Device ID 1 |  |  | R |  | 0 |
| 2 | Device ID 2 |  |  | R |  | 0 |
| 3 | Device ID 3 |  |  | R |  | 0 |
| 4 | Device ID 4 |  |  | R |  | 0 |
| 5 | Device ID 5 |  |  | R |  | 0 |
| 6 | Device ID 6 |  |  | R |  | 0 |
| 7 | Device ID 7 (MSB) |  |  | R |  | 0 |

Table 23. Byte 7: Byte Count Register

| Bit | Description | If Bit = $\mathbf{0}$ | If Bit = $\mathbf{1}$ | Type | Default | Output(s) <br> Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | BC0 - Writing to this register configures <br> how many bytes will be read back |  |  | RW | 0 |  |
| 1 | BC1 - Writing to this register configures <br> how many bytes will be read back |  |  | RW | 0 |  |
| 2 | BC2 - Writing to this register configures <br> how many bytes will be read back |  |  | RW | 0 |  |
| 3 | BC3 - Writing to this register configures <br> how many bytes will be read back |  |  | RW | 1 |  |
| 4 | BC4 - Writing to this register configures <br> how many bytes will be read back |  |  | RW | 0 |  |
| 5 | Reserved |  |  |  | 0 |  |
| 6 | Reserved |  |  |  | 0 |  |
| 7 | Reserved |  |  | 0 |  |  |

## 5. Power Filtering Example

### 5.1. Ferrite Bead Power Filtering

Recommended ferrite bead filtering equivalent to the following: $600 \Omega$ impedance at $100 \mathrm{MHz}, \leq 0.1 \Omega \mathrm{DCR}$ max., $\geq 400 \mathrm{~mA}$ current rating.


Figure 12. Schematic Example of Si53112-A03A Power Filtering

## Si53112-A03A

## 6. Pin Descriptions: 64-Pin QFN



Notes:

1) Internal 100K pull-down

Table 24. si53112-A03A 64-Pin QFN Descriptions

| Pin \# | Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | VDDA | 3.3 V | 3.3 V power supply for PLL. |
| 2 | GNDA | GND | Ground for PLL. |
| 3 | NC | I/O | No connect. |
| 4 | 100M_133M | I,SE | 3.3 V tolerant inputs for input/output frequency selection. An external pullup or pull-down resistor is attached to this pin to select the input/output frequency. <br> High $=100 \mathrm{MHz}$ output <br> Low $=133 \mathrm{MHz}$ output |
| 5 | HBW_BYPASS_LBW | I, SE | Tri-Level input for selecting the PLL bandwidth or bypass mode. <br> High = High BW mode <br> Med = Bypass mode <br> Low = Low BW mode |
| 6 | $\overline{\text { PWRGD/PWRDN }}$ | 1 | 3.3 V LVTTL input to power up or power down the device. |
| 7 | GND | GND | Ground for outputs. |
| 8 | VDDR | VDD | 3.3 V power supply for differential input receiver. This VDDR should be treated as an analog power rail and filtered appropriately. |
| 9 | CLK_IN | I, DIF | 0.7 V Differential input. |
| 10 | $\overline{\text { CLK_IN }}$ | I, DIF | 0.7 V Differential input. |
| 11 | SA_0 | 1 | 3.3 V LVTTL input selecting the address. Tri-level input. |
| 12 | SDA | I/O | Open collector SMBus data. |
| 13 | SCL | I/O | SMBus slave clock input. |
| 14 | SA_1 | 1 | 3.3 V LVTTL input selecting the address. Tri-level input. |
| 15 | NC | I/O | No connect. There are active signals on pin 15 and 16, do not connect anything to these pins. |
| 16 | NC | I/O | No connect. There are active signals on pin 15 and 16, do not connect anything to these pins. |
| 17 | DIF_0 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 18 | DIF_0 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 19 | $\overline{\mathrm{OE}}$-0 | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 20 | $\overline{\mathrm{OE}}$-1 | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 21 | DIF_1 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 22 | DIF_1 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 23 | GND | GND | Ground for outputs. |

Table 24. si53112-A03A 64-Pin QFN Descriptions

| Pin \# | Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 24 | VDD | 3.3 V | 3.3 V power supply for outputs. |
| 25 | VDD_IO | VDD | Power supply for differential outputs. |
| 26 | DIF_2 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 27 | DIF_2 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 28 | $\overline{\mathrm{OE}}$ 2 | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 29 | $\overline{\text { OE_3 }}$ | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 30 | DIF_3 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 31 | DIF_3 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 32 | VDD_IO | VDD | Power supply for differential outputs. |
| 33 | GND | GND | Ground for outputs. |
| 34 | DIF_4 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 35 | DIF_4 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 36 | $\overline{\mathrm{OE}}$ 4 4 | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 37 | $\overline{\mathrm{OE}}$ _5 | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 38 | DIF_5 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 39 | DIF_5 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 40 | VDD | 3.3 V | 3.3 V power supply for outputs. |
| 41 | GND | GND | Ground for outputs. |
| 42 | DIF_6 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 43 | DIF_6 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 44 | $\overline{\text { OE_6 }}$ | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 45 | $\overline{\mathrm{OE}}$ _7 | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). Controls the corresponding output pair. Internal pull-down. |
| 46 | DIF_7 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 47 | DIF_7 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |
| 48 | GND | GND | Ground for outputs. |
| 49 | VDD_IO | VDD | Power supply for differential outputs. |
| 50 | DIF_8 | O, DIF | 0.7 V Differential clock outputs. Default is $1: 1$. |

Table 24. si53112-A03A 64-Pin QFN Descriptions

| Pin \# | Name | Type | Description |
| :---: | :---: | :---: | :--- |
| 51 | $\overline{\text { DIF_8 }}$ | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 52 | $\overline{\text { OE_8 }}$ | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). <br> Controls the corresponding output pair. Internal pull-down. |
| 53 | $\overline{\text { OE_9 }}$ | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). <br> Controls the corresponding output pair. Internal pull-down. |
| 54 | DIF_9 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 55 | $\overline{\text { DIF_9 }}$ | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 56 | VDD_IO | VDD | Power supply for differential outputs. |
| 57 | VDD | 3.3 V | 3.3 V power supply for outputs. |
| 58 | GND | GND | Ground for outputs. |
| 59 | DIF_10 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 60 | $\overline{\text { DIF_10 }}$ | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 61 | $\overline{\text { OE_10 }}$ | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). <br> Controls the corresponding output pair. Internal pull-down. |
| 62 | $\overline{\text { OE_11 }}$ | I, SE | 3.3 V LVTTL active low input for enabling differential outputs (default). <br> Controls the corresponding output pair. Internal pull-down. |
| 63 | DIF_11 | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |
| 64 | $\overline{\text { DIF_11 }}$ | O, DIF | 0.7 V Differential clock outputs. Default is 1:1. |

## 7. Ordering Guide

| Part Number | Package Type | Temperature |
| :---: | :---: | :---: |
| Lead-free |  |  |
| Si53112-A03AGM | 64 -pin QFN | Extended, -40 to $85^{\circ} \mathrm{C}$ |
| Si53112-A03AGMR | $64-$-pin QFN-Tape and Reel | Extended, -40 to $85^{\circ} \mathrm{C}$ |

## 8. Package Outline

Figure 13 illustrates the package details for the Si53112-A03A. Table 25 lists the values for the dimensions shown in the illustration.


Figure 13. 64-Pin Quad Flat No Lead (QFN) Package
Table 25. Package Diagram Dimensions

| Dimension | Min | Nom | Max |
| :---: | :---: | :---: | :---: |
| A | 0.80 | 0.85 | 0.90 |
| A1 | 0.00 | 0.02 | 0.05 |
| b | 0.18 | 0.25 | 0.30 |
| D | 9.00 BSC. |  |  |
| D2 | 6.00 | 6.10 | 6.20 |
| e BSC. |  |  |  |
| E |  |  |  |
| E2 | 6.00 | 6.10 |  |
| L | 0.30 | 0.40 | 0.50 |
| aaa |  |  |  |
| bbb | 0.10 | 0.10 |  |
| ccc | 0.08 |  |  |
| ddd | 0.05 |  |  |
| eee |  |  |  |

Notes:

1. All dimensions shown are in millimeters ( mm ) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

## Si53112-A03A

## 9. Land Pattern

Figure 14 illustrates the recommended land pattern details for the Si53112-A03A in a 64 -pin QFN package. Table 26 lists the values for the dimensions shown in the illustration.


Figure 14. Land Pattern

Table 26. PCB Land Pattern Dimensions

| Dimension | mm |
| :---: | :---: |
| C1 | 8.90 |
| C2 | 8.90 |
| E | 0.50 |
| X1 | 0.30 |
| Y1 | 0.85 |
| X2 | 6.20 |
| Y2 | 6.20 |
| Notes: <br> General <br> 1. All dimensions shown are in millimeters ( mm ). <br> 2. This Land Pattern Design is based on the IPC-7351 guidelines. <br> 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm . <br> Solder Mask Design <br> 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. <br> Stencil Design <br> 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. <br> 6. The stencil thickness should be 0.125 mm ( 5 mils). <br> 7. The ratio of stencil aperture to land pad size should be $1: 1$ for all pads. <br> 8. A $3 \times 3$ array of 1.45 mm square openings on a 2.00 mm pitch should be used for the center ground pad. <br> Card Assembly <br> 9. A No-Clean, Type-3 solder paste is recommended. <br> 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. |  |

## SKYWORKS

## ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!
www.skyworksinc.com/CBPro


I

?
Portfolio
www.skyworksinc.com/ia/timing


SW/HW
www.skyworksinc.com/CBPro


Quality
www.skyworksinc.com/quality


Support \& Resources
www.skyworksinc.com/support

## Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.
 registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock \& Timer Development Tools category:
Click to view products by Silicon Labs manufacturer:
Other Similar products are found below :
AD9517-0A/PCBZ AD9517-2A/PCBZ AD9522-4/PCBZ AD9520-5PCBZ AD9530/PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2880EVKIT\# MAX2750EVKIT MAX2752EVKIT ADCLK946PCBZ ADCLK946/PCBZ MAX2622EVKIT EKIT01-HMC1032LP6G Si5332-8IX-EVB Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC8364LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B EVAL01-HMC988LP3E TS3002DB 125605HMC702LP6CE LMX2487E-EVM MIKROE-2481 2045 EKIT01-HMC835LP6G EKIT01-HMC834LP6GE TS3006DB DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261HMC739LP4 ADCLK925/PCBZ AD9522-0/PCBZ AD9520-4/PCBZ AC164147 DFR0469

