Si5315-EVB

SKYWORIS

SI5315-EVB UsER's GuIde

Description

The Si5315 Evaluation Board User's Guide provides for a complete and simple evaluation of the functions, features, and performance of the Si5315-EVB.
The Si5315 Synchronous Ethernet/Telecom jitter attenuating clock multiplier has a comprehensive feature set, including any-rate frequency synthesis, multiple clock inputs, multiple clock outputs, alarm and status outputs, hitless switching between input clocks, and programmable output clock signal format (LVPECL, LVDS, CML, CMOS). For more details, consult the Skyworks Solutions timing products website at: https://www.skyworksinc.com/en/Products/Timing.
TheSi5315-EVB has two differential clock input and
output ports that are AC terminated to 50 ohms and then AC coupled to the Si 5315 . The XA-XB reference is usually a 40 MHz crystal; however, there are provisions for an external XA-XB reference clock (either differential or single ended).
The evaluation board (EVB) can be powered using two different approaches: external power supplies or by USB. Jumper plugs are provided to select between these two options. Jumper plugs are used to strap the device pins for the various pin value options. Status outputs are available on a ribbon connector header. SMA connectors are used for the clock input, output, and XA-XB reference signals.

Features

The Si5315-EVB includes the following:

- Evaluation board
- CD with the Si5315 documentation and the Si5315-EVB User's Guide

Function Block Diagram

Si5315-EVB

1. Introduction

The Si5315 is a jitter-attenuating clock multiplier for Gb and 10G Synchronous Ethernet, SONET/SDH, and PDH (T1/E1) applications. The Si5315 accepts dual clock inputs ranging from 8 kHz to 644.53 MHz and generates two equal frequency-multiplied clock outputs ranging from 8 kHz to 644.53 MHz . The input clock frequency and clock multiplication ratio are selectable from a table of popular SyncE and T1/E1 rates. The Si5315 is based on Skyworks Solutions' 3rd-generation DSPLL ${ }^{\circledR}$ technology, which provides any-rate frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is user programmable, providing jitter performance optimization at the application level.
Refer to the Si5315 data sheet for technical details of the device.

Figure 1. Si5315 EVB

2. Si53315-EVB Input and Output Clocks

Refer to the schematics, diagrams, and tables while reading this section.

2.1. Input Clocks

The Si5315 has two differential clock inputs that are AC terminated and AC coupled before being presented to the Si5315. If the input clock frequencies are low (below 1 MHz), there are extra considerations that should be taken into account. The Si5315 has a maximum clock input rise time specification of 11 ns that must be met (see CKNtrf in the Si5315 data sheet). Also, if the input clock is LVCMOS, it might be advantageous to replace the input coupling capacitors (C7, C12, C16, and C18) with zero ohm resistors. Regardless of the input format, if the clock inputs are not roughly 50% duty cycle, it is highly recommended to avoid AC coupling. For input clocks that are far off of 50% duty cycle, the average value of the signal that passes through the coupling capacitor will be significantly off of the midpoint between the maximum and minimum value of the clock signal, resulting in a mismatch with the common mode input threshold voltage (see $\mathrm{V}_{\mathrm{ICM}}$ in Table 2 of the $\mathrm{S} i 5315$ data sheet).

2.2. XA-XB Reference

To achieve very low jitter generation and for stability during holdover, the Si5315 requires a stable, low jitter reference at its XA-XB pins. To that end, the EVB is configured with a 40 MHz fundamental mode crystal connected between pins 6 and 7 of the Si5315. However, the Si5315-EVB is capable of using an external XA-XB reference oscillator, either differential or single ended. J1 and J2 are the SMA connectors with AC termination. AC coupling is also provided that needs to be installed at C 6 and C 8 . Table 1 explains the changes of components that are needed to implement an external XA-XB reference oscillator.

Table 1. XA-XB Reference Mode of Operation

	Mode	
	Xtal	Ext Ref
Ext Ref In+	NC	J1
Ext Ref In-	NC	J2
C6, C8	NOPOP	install
R8	install	
XTAL/CLOCK (J12 jumper, see Table 3.)	L	
Notes: 1. Xtal is 40 MHz. 2. NC - no connect. 3. NOPOP - do not install.		

2.3. Output Clocks

The clock outputs are AC coupled and are available on SMA's J5, J7, J9, and J11. For LVCMOS outputs, it might be desirable to replace the AC coupling capacitors (C9, C14, C17, and C 20) with zero ohm resistors. Also, if greater drive strength is desired for LVCMOS outputs, R6 and R10 can be installed.

2.4. Pin Configuration

J 12 is the large jumper header in the center left of the board that implements the jumper plugs that configure the pins of the Si5315. Each pin can be strapped to be either H, M or L. H is achieved by installing a jumper plug between the appropriate middle row pin and its VDD row pin. L is achieved by installing a jumper plug between the appropriate middle row pin and its GND row pin. M is achieved by not installing a jumper plug.

2.5. Evaluation Board Power Options

The EVB can be powered from two possible sources: USB or external supplies. A 3.3 V supply is required to run the LEDs because of their large forward drop. The Si 5315 power supply can be separated from the 3.3 V supply so that the Si5315 can be evaluated at voltages other than 3.3 V . It is important to note that when the USB supply is being used, the EVB uses the USB port only for power and that the resulting power supply is strictly 3.3 V .
Here are the instructions for the various possibilities:

2.5.1. Two External Power Supplies

1. Install a jumper between J16.1 and J16.2 (labeled EXT).
2. No USB connection.
3. If the Si5315 is not being operated at 3.3 V , two different supplies should be connected to J 14 . Connect the 3.3 V supply to J 14.1 and J 14.2 (labeled 3.3 V and GND). Connect the SI5315 power supply between J14.2 and J14.3 (labeled GND and DUT).
4. If the Si 5315 is to be operated at $3.3 \mathrm{~V}, \mathrm{~J} 15$ (labeled ONE PWR) can be installed, requiring only one external supply. Connect 3.3 V power between J14.2 and J14.3 (labeled GND and DUT).

2.5.2. USB Power

1. With a USB cable, plug the EVB into a powered USB port.
2. Install a jumper between J16.2 and J16.3 (labeled USB).
3. Install a jumper at J15 (labeled ONE PWR).

2.5.3. USB 3.3 V Power, External Si5315 Power

1. Install a jumper between J16.2 and J16.3 (labeled USB).
2. No jumper at J15 (labeled ONE PWR).
3. Connect the Si5315 power supply between J14.2 and J14.3 (labeled GND and DUT).

3. Connectors and LEDs

3.1. LEDs

Table 2. LED Descriptions

LED	Color	Label	Significance
D1	Yellow	CS_CA	ON = clock input 2 selected, else clock 1
D2	Red	LOS2	ON $=$ no valid clock input 2
D3	Red	LOS1	ON $=$ no valid clock input 1
D4	Red	LOL	ON $=$ Si5315 is not locked
D5	Green	DUT_PWR	ON $=$ Si5315 power is present
D6	Green	$3.3 V$	ON $=3.3 \mathrm{~V}$ power is present

3.2. Connectors, Headers, and Jumpers

Refer to Figure 2 to locate the items described in this section.

Figure 2. Connectors, Headers, and Jumper Locations

Table 3. Configuration Header, J12

J 12	Pin
J 12.1	Not used*
J 12.2	SFOUT0
J 12.3	SFOUT1
J 12.4	FRQTBL
J 12.5	FRQSEL0
J 12.6	FRQSEL1
J 12.7	FRQSEL2
J 12.8	BWQSEL3
J 12.9	BSWEL1
J 12.10	DBL2_BY
J 12.11	AUTOSEL
J 12.12	XTAL/CLOCK
J 12.13	Not used*
J 12.14	
Un4sel	

*Note: Unused header pin locations should be left open.

Table 4. Status Indication Header, J13

J13	Signal
J13.1	LOS1
J 13.3	LOS2
J 13.5	CS_CA
J 13.7	LOL
J 13.9	RST_B

4. Schematics

Figure 3. Si5315/17-EVB

 ground
pins

Figure 4. Power and LED

5. Bill of Materials

Table 5. Si5315-EVB Bill of Materials

Item	Qty	Reference	Part	Mfr	Manufacturer Part No.
1	6	C1,C2, C3, C13, C15, C19	10NF	Venkel	C0603X7R160-103KNE
2	11	$\begin{gathered} \text { C4,C7,C9,C10,C11,C12,C14, } \\ \text { C16,C17,C18,C20 } \end{gathered}$	100N	Venkel	C0603X7R160-104KNE
3	3	C5,C22,C25	1UF	Venkel	C0603X7R6R3-105KNE
5	2	C21,C24	220UF	Kemet	T494B227M004AT
6	2	C23,C26	33UF	Venkel	TA006TCM336MBR
7	1	D1	Yel	Panasonic	LN1471YTR
8	3	D2,D3,D4	Red	Lumex	LN1271RAL
9	2	D5,D6	Grn	Panasonic	LN1371G
11	10	$\begin{gathered} \mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 4, \mathrm{~J} 5, \mathrm{~J} 6, \mathrm{~J} 7, \\ \mathrm{~J}, \mathrm{~J} 9, \mathrm{~J} 10, \mathrm{~J} 11 \end{gathered}$	SMA_EDGE	Johnson	142-0701-801
13	1	J12	14x3_M_HDR_THRU	-	
14	1	J13	10_M_Header	3M	N2510-6002RB
15	1	J14	Phoenix_3_screw	Phoenix	MKDSN 1.5/3-5.08
16	1	J15	Jmpr_2pin		
17	1	J16	Jmpr_3pin		
18	1	J17	USB	FCl	61729-0010BLF
19	9	$\begin{gathered} \text { J18,J19,J20,J21, } \\ \text { J22,J23,J24,J25,J26 } \end{gathered}$	Jmpr_1pin		
20	2	L1,L2	Ferrite	Venkel	FBC1206-471H
21	5	Q1,Q2, Q3, Q4, Q5	BSS138	On Semi	BSS138LT1G
23	4	R2,R8,R12,R16	0 ohm	Venkel	CR0603-16W-000T
24	6	R3,R4,R5,R7,R9,R11	49.9	Venkel	CR0603-16W-49R9FT
26	1	R14	10	Venkel	CR0603-16W-10R0FT
27	2	R15,R20	10k	Venkel	CR603-16W-1002FT
28	2	R17,R18	150	Venkel	CR0603-16W-1500FT
29	1	R19	R150x4	Panasonic	EXB-38V151JV
31	1	U1	Si5315	Skyworks Solutions	Si5315A-C-GM

Table 5. Si5315-EVB Bill of Materials

Item	Qty	Reference	Part	Mfr	Manufacturer Part No.
32	1	U2	FAN1540B	Fairchild	FAN1540BPMX
33	1	X1	40 MHz	Abracon	ABM8-40.000 MHz-BZT
4	2	Not Populated			
12	1	C6,C8	10NF	Venkel	C0603X7R160-103KNE
22	1	R1	Jmpr_2pin		
25	3	R6,R10,R13	100	Venkel	CR0603-16W-1000FT

6. Layout

Figure 5. Silkscreen Top

Figure 6. Layer 1

Figure 7. Layer 2-Ground Plane

Figure 8. Layer 3

Figure 9. Layer 4

Figure 10. Layer 5, FILT_DUT_PWR

Figure 11. Layer 6, Bottom

Figure 12. Bottom Silkscreen

7. Factory Default Configuration

Table 6. Factory Default Jumper Settings

J12	Pin	Jumper
J12.1	Not used	-
J12.2	SFOUT0	H
J12.3	SFOUT1	M
J12.4	FRQTBL	H
J12.5	FRQSELO	L
J12.6	FRQSEL1	H
J12.7	FRQSEL2	M
J12.8	FRQSEL3	L
J12.9	BWSEL0	H
J12.10	BSWEL1	H
J12.11	DBL2_BY	L
J12.12	AUTOSEL	H
J12.13	XTAL/CLOCK	L
J12.14	Not used	-

The jumper settings in Table 6 result in the following:
SFOUT = LVPECL outputs
19.44 MHz input clocks
155.52 MHz output clocks

BW $=112 \mathrm{~Hz}$
DBL2_BY = CKOUT2 enabled
AUTOSEL = automatic revertive clock selection
XTAL/CLOCK $=40 \mathrm{MHz}$ crystal
Refer to Table 7 in the Si5315 Data Sheet for other frequency plans.

The factory configuration for the board is to use only USB power by using the following jumper configuration:

Jumper between J16.2 and J16.3 (labeled PWR, USB)
Jumper installed on J15 (labeled ONE POWER)

Si5315-EVB

Notes:

Document Change list

Revision 0.1 to Revision 0.2

- Removed Si5315-EVB from Appendix of Si5315EVB, Si5316-EVB, Si5319-EVB, Si532/23-EVB, Si5325/26-EVB with Si5315-EVB Appendix B User's Guide
- Revised Revision 0.2 as a stand-alone Si5315EVB User's Guide

SKYWORKS

ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!
www.skyworksinc.com/CBPro

I

?
Portfolio
www.skyworksinc.com/ia/timing

SW/HW
www.skyworksinc.com/CBPro

Quality
www.skyworksinc.com/quality

Support \& Resources
www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.
 registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock \& Timer Development Tools category:
Click to view products by Silicon Labs manufacturer:
Other Similar products are found below :
AD9517-0A/PCBZ AD9517-2A/PCBZ AD9522-4/PCBZ AD9520-5PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2880EVKIT\# MAX2750EVKIT MAX2752EVKIT ADCLK946PCBZ ADCLK946/PCBZ MAX2622EVKIT EKIT01-HMC1032LP6G Si5332-8IX-EVB RV-2251-C3-EVALUATION-BOARD Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC8364LP6G EV1HMC8362LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B EVAL01-HMC988LP3E TS3002DB LMX2487E-EVM MIKROE-2481 2045 EKIT01-HMC835LP6G EKIT01-HMC834LP6GE TS3006DB DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261HMC739LP4 ADCLK925/PCBZ AD9522-0/PCBZ AD9520-4/PCBZ AC164147 DFR0469

