Si5325

SKYWORIK ${ }^{\circ}$

μ P-Programmable Precision Clock Multiplier

Features

- Not recommended for new . Dual clock outputs with designs. For alternatives, see the Si533x family of products.
- Generates frequencies from 2 kHz to 945 MHz and select frequencies to 1.4 GHz from an input frequency of 10 to 710 MHz
- Low jitter clock outputs with jitter generation as low as 0.5 ps rms ($12 \mathrm{kHz}-20 \mathrm{MHz}$)
- Integrated loop filter with selectable loop bandwidth (150 kHz to 2 MHz)
- Dual clock inputs w/manual or automatically controlled switching
selectable signal format (LVPECL, LVDS, CML, CMOS)
- Support for ITU G. 709 and custom FEC ratios (255/238, 255/237, 255/236)
LOS, FOS alarm outputs
- $I^{2} \mathrm{C}$ or SPI programmable
- On-chip voltage regulator for $1.8 \pm 5 \%$, 2.5 or $3.3 \mathrm{~V} \pm 10 \%$ operation
- Small size: $6 \times 6 \mathrm{~mm} 36$-lead QFN
- Pb-free, ROHS compliant

Applications

- SONET/SDH OC-48/STM-16 and OC-192/STM-64 line cards
- GbE/10GbE, 1/2/4/8/10GFC line cards
■ ITU G. 709 and custom FEC line cards
- Optical modules
- Wireless basestations
- Data converter clocking
- xDSL
- SONET/SDH + PDH clock synthesis

■ Test and measurement

Description

The Si 5325 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5325 accepts dual clock inputs ranging from 10 to 710 MHz and generates two
 clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The two outputs are divided down separately from a common source. The device provides frequency translation combinations across this operating range. The Si5325 input clock frequency and clock multiplication ratio are programmable through an $1^{2} \mathrm{C}$ or SPI interface.
The Si5325 is based on Skyworks Solutions' 3rd-generation DSPLL® technology, which provides frequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable. Operating from a single $1.8,2.5$, or 3.3 V supply, the Si 5325 is ideal for providing clock multiplication in high performance timing applications.

Si5325

Functional Block Diagram

Table of Contents

Section Page

1. Electrical Specifications 4
2. Functional Description 16
2.1. Further Documentation 16
3. Register Map 17
4. Register Descriptions 19
5. Pin Descriptions: Si5325 52
6. Ordering Guide 56
7. Package Outline: 36-Pin QFN 57
8. Land Pattern: 36-Pin QFN 58
9. Top Marking 60
9.1. Si5325 Top Marking (QFN) 60
9.2. Top Marking Explanation 60
Document Change List 61
Contact Information 62

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Ambient Temperature	T_{A}		-40	25	85	C
Supply Noltage during Normal Operation	V_{DD}	3.3 V Nominal	2.97	3.3	3.63	V
		2.5 V Nominal	2.25	2.5	2.75	V
	1.8 V Nominal	1.71	1.8	1.89	V	

Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of $25^{\circ} \mathrm{C}$ unless otherwise stated.

Figure 1. Differential Voltage Characteristics

CKIN, CKOUT

Figure 2. Rise/Fall Time Characteristics

Table 2. DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply Current ${ }^{1}$	IDD	LVPECL Format 622.08 MHz Out Both CKOUTs Enabled	-	251	279	mA
		LVPECL Format 622.08 MHz Out 1 CKOUT Enabled	-	217	243	mA
		CMOS Format 19.44 MHz Out Both CKOUTs Enabled	-	204	234	mA
		$\begin{aligned} & \text { CMOS Format } \\ & \text { 19.44 MHz Out } \\ & 1 \text { CKOUT Enabled } \end{aligned}$	-	194	220	mA
		Disable Mode	-	165	-	mA
CKINn Input Pins ${ }^{2}$						
Input Common Mode Voltage (Input Threshold Voltage)	VICM	$1.8 \mathrm{~V} \pm 5 \%$	0.9	-	1.4	V
		$2.5 \mathrm{~V} \pm 10 \%$	1	-	1.7	V
		$3.3 \vee \pm 10 \%$	1.1	-	1.95	V
Input Resistance	CKN ${ }_{\text {RIN }}$	Single-ended	20	40	60	k Ω
Single-Ended Input Voltage Swing (See Absolute Specs)	$\mathrm{V}_{\text {ISE }}$	$\begin{gathered} \mathrm{f}_{\text {CKIN }}<212.5 \mathrm{MHz} \\ \text { See Figure } 1 . \end{gathered}$	0.2	-	-	V_{PP}
		$\mathrm{f}_{\mathrm{CKIN}}>212.5 \mathrm{MHz}$ See Figure 1.	0.25	-	-	$V_{\text {PP }}$
Differential Input Voltage Swing (See Absolute Specs)	$\mathrm{V}_{\text {ID }}$	$\mathrm{f}_{\mathrm{CKIN}}<212.5 \mathrm{MHz}$ See Figure 1.	0.2	-	-	V_{PP}
		fCKIN > 212.5 MHz See Figure 1.	0.25	-	-	V_{PP}

Notes:

1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal $\mathrm{VDD} \geq 2.5 \mathrm{~V}$.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.

Table 2. DC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Clocks (CKOUTn) ${ }^{3}$						
Common Mode	$\mathrm{CKO}_{\text {Vсм }}$	LVPECL 100Ω load line-to-line	$V_{D D}-1.42$	-	$\mathrm{V}_{\mathrm{DD}}-1.25$	V
Differential Output Swing ${ }^{5}$	$\mathrm{CKO}_{\mathrm{VD}}$	LVPECL 100Ω load line-to-line	1.1	-	1.9	V_{PP}
Single-Ended Output Swing ${ }^{5}$	$\mathrm{CKO}_{\text {VSE }}$	LVPECL 100Ω load line-to-line	0.5	-	0.93	V_{PP}
Differential Output Voltage	$\mathrm{CKO}_{\mathrm{VD}}$	CML 100Ω load line-toline	350	425	500	$m V_{P P}$
Common Mode Output Voltage	$\mathrm{CKO}_{\mathrm{Vcm}}$	CML 100Ω load line-toline	-	$V_{\text {DD }} 0.36$	-	V
Differential Output Voltage	$\mathrm{CKO}_{\mathrm{vd}}$	LVDS 100Ω load line-to-line	500	700	900	$m V_{P P}$
		Low Swing LVDS 100Ω load line-to-line	350	425	500	mV PPP
Common Mode Output Voltage	СKOVcm	LVDS 100Ω load line-toline	1.125	1.2	1.275	V
Differential Output Resistance	$\mathrm{CKO}_{\text {RD }}$	CML, LVPECL, LVDS	-	200	-	Ω
Output Voltage Low	CKOVollh	cmos	-	-	0.4	V
Output Voltage High	$\mathrm{CKO}_{\text {VOHLH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V} \\ \text { CMOS } \end{gathered}$	$0.8 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V

Notes:

1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD $\geq 2.5 \mathrm{~V}$.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.

Table 2. DC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Drive Current (CMOS driving into CKO VoL for output low or $\mathrm{CKO}_{\mathrm{VOH}}$ for output high. CKOUT+ and CKOUT- shorted externally)	$\mathrm{CKO}_{1 \mathrm{O}}$	$\begin{gathered} \operatorname{ICMOS}[1: 0]=11 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	7.5	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=10 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	5.5	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=01 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	3.5	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=00 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	1.75	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=11 \\ V_{D D}=3.3 \mathrm{~V} \end{gathered}$	-	32	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=10 \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	-	24	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=01 \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	-	16	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=00 \\ V_{D D}=3.3 \mathrm{~V} \end{gathered}$	-	8	-	mA
2-Level LVCMOS Input Pins						
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$	-	-	0.7	V
		$\mathrm{V}_{\mathrm{DD}}=2.97 \mathrm{~V}$	-	-	0.8	V
Input Voltage High	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.89 \mathrm{~V}$	1.4	-	-	V
		$\mathrm{V}_{\text {DD }}=2.25 \mathrm{~V}$	1.8	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=3.63 \mathrm{~V}$	2.5	-	-	V
Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal $\mathrm{VDD} \geq 2.5 \mathrm{~V}$. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.						

Si5325

Table 2. DC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
3-Level Input Pins ${ }^{4}$						
Input Voltage Low	$\mathrm{V}_{\text {ILL }}$		-	-	$0.15 \times V_{\text {DD }}$	V
Input Voltage Mid	$\mathrm{V}_{\text {IMM }}$		$0.45 \times \mathrm{V}_{\mathrm{DD}}$	-	$0.55 \times \mathrm{V}_{\mathrm{DD}}$	V
Input Voltage High	$\mathrm{V}_{\mathrm{IHH}}$		$0.85 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
Input Low Current	IILL	See Note 4	-20	-	-	$\mu \mathrm{A}$
Input Mid Current	$\mathrm{I}_{\text {IM }}$	See Note 4	-2	-	+2	$\mu \mathrm{A}$
Input High Current	$\mathrm{I}_{\text {HH }}$	See Note 4	-	-	20	$\mu \mathrm{A}$
LVCMOS Output Pins						
Output Voltage Low	V_{OL}	$\begin{aligned} I O & =2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}} & =1.71 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Output Voltage Low		$\begin{aligned} I O & =2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}} & =2.97 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Output Voltage High	V_{OH}	$\begin{gathered} \mathrm{IO}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=1.71 \mathrm{~V} \end{gathered}$	$V_{D D}-0.4$	-	-	V
Output Voltage High		$\begin{gathered} 1 \mathrm{O}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=2.97 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
Disabled Leakage Current	I_{OZ}	$\mathrm{RSTb}=0$	-100	-	100	$\mu \mathrm{A}$
Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD $\geq 2.5 \mathrm{~V}$. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with $\mathrm{Fo}=622.08 \mathrm{MHz}$.						

Table 3. AC Characteristics
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
CKINn Input Pins						
Input Frequency	CKN $_{F}$		10	-	710	MHz
Input Duty Cycle (Minimum Pulse Width)	CKN $_{\text {DC }}$	Whichever is smaller (i.e., the 40\% / 60% limitation applies only to high frequency clocks)	40	-	60	$\%$
			2	-	-	ns
Input Capacitance	$\mathrm{CKN}_{\text {CIN }}$		-	-	3	pF
Input Rise/Fall Time	$\mathrm{CKN}_{\text {TRF }}$	20-80\% See Figure 2	-	-	11	ns
CKOUTn Output Pins						

(See ordering section for speed grade vs frequency limits)

Output Frequency (Output not configured for CMOS or Disabled)	$\mathrm{CKO}_{\mathrm{F}}$	N1 ≥ 6	0.002	-	945	MHz
		$\mathrm{N} 1=5$	970	-	1134	MHz
		$\mathrm{N} 1=4$	1.213	-	1.4	GHz
Maximum Output Frequency in CMOS Format	CKO_{F}		-	-	212.5	MHz
Output Rise/Fall (20-80 \%) @ 622.08 MHz output	$\mathrm{CKO}_{\text {TRF }}$	Output not configured for CMOS or Disabled See Figure 2	-	230	350	ps
$\begin{aligned} & \text { Output Rise/Fall } \\ & (20-80 \%) @ \\ & 212.5 \mathrm{MHz} \text { output } \end{aligned}$	$\mathrm{CKO}_{\text {TRF }}$	$\begin{gathered} \hline \text { CMOS Output } \\ V_{\text {DD }}=1.71 \\ \text { C }_{\text {LOAD }}=5 \mathrm{pF} \end{gathered}$	-	-	8	ns
$\begin{aligned} & \text { Output Rise/Fall } \\ & (20-80 \%) @ \\ & 212.5 \mathrm{MHz} \text { output } \end{aligned}$	$\mathrm{CKO}_{\text {TRF }}$	$\begin{aligned} & \text { CMOS Output } \\ & V_{\text {DD }}=2.97 \\ & \text { C }_{\text {LOAD }}=5 \mathrm{pF} \end{aligned}$	-	-	2	ns
Output Duty Cycle Uncertainty @ 622.08 MHz	$\mathrm{CKO}_{\text {DC }}$	100Ω Load Line-to-Line Measured at 50\% Point (Not for CMOS)	-	-	+/-40	ps

Si5325

Table 3. AC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
LVCMOS Input Pins						
Minimum Reset Pulse Width	$\mathrm{t}_{\text {RSTMN }}$		1	-	-	$\mu \mathrm{s}$
Reset to Microprocessor Access Ready	$\mathrm{t}_{\text {READY }}$		-	-	10	ms
Input Capacitance	$\mathrm{C}_{\text {in }}$		-	-	3	pF
LVCMOS Output Pins						
Rise/Fall Times	$t_{\text {RF }}$	$\begin{gathered} \mathrm{C}_{\mathrm{LOAD}}=20 \mathrm{pF} \\ \text { See Figure } 2 \end{gathered}$	-	25	-	ns
LOSn Trigger Window	$\mathrm{LOS}_{\text {TRIG }}$	From last CKINn \uparrow to \downarrow Internal detection of LOSn $\mathrm{N} 3 \neq 1$	-	-	$4.5 \times \mathrm{N} 3$	$\mathrm{T}_{\text {CKIN }}$
Time to Clear LOL after LOS Cleared	$\mathrm{t}_{\text {CLRLOL }}$	\downarrow LOS to \downarrow LOL Fold = Fnew Stable Xa/XB reference	-	10	-	ms
Device Skew						
Output Clock Skew	$\mathrm{t}_{\text {SKEW }}$	\uparrow of CKOUTn to \uparrow of CKOUT_m, CKOUTn and CKOUT_m at same frequency and signal format PHASEOFFSET $=0$ CKOUT_ALWAYS_ON $=1$ SQ ICAL $=1$	-	-	100	ps
Phase Change due to Temperature Variation	${ }_{\text {temp }}$	Max phase changes from $-40 \text { to }+85^{\circ} \mathrm{C}$	-	300	500	ps

Table 3. AC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
PLL Performance (fin = fout = 622.08 MHz; BW = $\mathbf{1 2 0 ~ H z ; ~ L V P E C L) ~}$						
Lock Time	$\mathrm{t}_{\text {LOCKMP }}$	Start of ICAL to \downarrow of LOL	-	35	1200	ms
Closed Loop Jitter Peaking	$J_{\text {PK }}$		-	0.05	0.1	dB
Jitter Tolerance	$\mathrm{J}_{\text {TOL }}$	Jitter Frequency \geq Loop Bandwidth	5000/BW	-	-	ns pk-pk
Phase Noise fout $=622.08 \mathrm{MHz}$	CKOpn	1 kHz Offset	-	-90	-	$\mathrm{dBc} / \mathrm{Hz}$
		10 kHz Offset	-	-113	-	$\mathrm{dBc} / \mathrm{Hz}$
		100 kHz Offset	-	-118	-	$\mathrm{dBc} / \mathrm{Hz}$
		1 MHz Offset	-	-132	-	$\mathrm{dBc} / \mathrm{Hz}$
Subharmonic Noise	$\mathrm{SP}_{\text {SUBH }}$	Phase Noise @ 100 kHz Offset	-	-88	-	dBc
Spurious Noise	SP ${ }_{\text {SPUR }}$	$\begin{gathered} \text { Max spur @ nx F3 } \\ (n \geq 1, n \times F 3<100 \mathrm{MHz}) \end{gathered}$	-	-93	-	dBc

Table 4. Microprocessor Control
($\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
$1^{2} \mathrm{C}$ Bus Lines (SDA, SCL)						
Input Voltage Low	$\mathrm{VIL}_{12 \mathrm{C}}$		-	-	$0.25 \times \mathrm{V}_{\mathrm{DD}}$	V
Input Voltage High	VIH ${ }_{12 \mathrm{C}}$		$0.7 \times V_{\text {DD }}$	-	$V_{D D}$	V
Hysteresis of Schmitt trigger inputs	VHYS ${ }_{\text {I2C }}$	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	$0.1 \times V_{\text {DD }}$	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=2.5$ or 3.3 V	$0.05 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
Output Voltage Low	$\mathrm{VOL}_{12 \mathrm{C}}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \\ 10=3 \mathrm{~mA} \end{gathered}$	-	-	$0.2 \times \mathrm{V}_{\mathrm{DD}}$	V
		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.5 \text { or } 3.3 \mathrm{~V} \\ 1 \mathrm{O}=3 \mathrm{~mA} \end{gathered}$	-	-	0.4	V

Si5325

Table 4. Microprocessor Control (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SPI Specifications						
Duty Cycle, SCLK	t_{DC}	SCLK $=10 \mathrm{MHz}$	40	-	60	\%
Cycle Time, SCLK	t_{c}		100	-	-	ns
Rise Time, SCLK	t_{r}	20-80\%	-	-	25	ns
Fall Time, SCLK	t_{f}	20-80\%	-	-	25	ns
Low Time, SCLK	$\mathrm{t}_{\text {lsc }}$	20-20\%	30	-	-	ns
High Time, SCLK	$t_{\text {hsc }}$	80-80\%	30	-	-	ns
Delay Time, SCLK Fall to SDO Active	$\mathrm{t}_{\mathrm{d} 1}$		-	-	25	ns
Delay Time, SCLK Fall to SDO Transition	$\mathrm{t}_{\mathrm{d} 2}$		-	-	25	ns
Delay Time, SS Rise to SDO Tri-state	$\mathrm{t}_{\mathrm{d} 3}$		-	-	25	ns
Setup Time, SS to SCLK Fall	$\mathrm{t}_{\text {su1 }}$		25	-	-	ns
Hold Time, SS to SCLK Rise	$t_{\text {h }}$		20	-	-	ns
Setup Time, SDI to SCLK Rise	$\mathrm{t}_{\text {su2 }}$		25	-	-	ns
Hold Time, SDI to SCLK Rise	$\mathrm{t}_{\mathrm{h} 2}$		20	-	-	ns
Delay Time between Slave Selects	t_{cs}		25	-	-	ns

Table 5. Jitter Generation

Parameter	Symbol	Test Condition*	Min	Typ	Max	Unit
		Measurement Filter				
Jitter Gen OC-192	JGEN	$0.02-80 \mathrm{MHz}$	-	. 49	-	$\mathrm{ps}_{\text {rms }}$
		$4-80 \mathrm{MHz}$	-	. 23	-	ps ${ }_{\text {rms }}$
		$0.05-80 \mathrm{MHz}$	-	. 47	-	ps ${ }_{\text {rms }}$
Jitter Gen OC-48	JGEN	0.12-20 MHz	-	. 48	-	$\mathrm{ps}_{\text {rms }}$
*Note: Test conditions: 1.flN $=\mathrm{f}_{\text {OUT }}=622.08 \mathrm{MHz}$ 2. Clock input: LVPECL 3.Clock output: LVPECL 4.PLL bandwidth: 877 kHz $5 . \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ 6. $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$						

Table 6. Thermal Characteristics

($\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	32	$\mathrm{C}^{\circ} / \mathrm{W}$
Thermal Resistance Junction to Case	θ_{JC}	Still Air	14	$\mathrm{C}^{\circ} / \mathrm{W}$

Table 7. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to 3.8	V
LVCMOS Input Voltage	$\mathrm{V}_{\text {DIG }}$	-0.3 to $\left(\mathrm{V}_{\mathrm{DD}}+0.3\right)$	V
CKINn Voltage Level Limits	$\mathrm{CKN}_{\text {VIN }}$	0 to V_{DD}	V
XA/XB Voltage Level Limits	$\mathrm{XA}_{\text {VIN }}$	0 to 1.2	V
Operating Junction Temperature	$\mathrm{T}_{\text {JCT }}$	-55 to 150	C
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55 to 150	C
ESD HBM Tolerance (100 pF, $1.5 \mathrm{k} \Omega) ;$ All pins except CKIN+/CKIN-		2	kV
ESD MM Tolerance; All pins except CKIN+/CKIN-		150	V
ESD HBM Tolerance (100 pF, 1.5 kS); CKIN+/CKIN-		750	V
ESD MM Tolerance; CKIN+/CKIN-		$\mathrm{JESD78}$ Compliant	
Latch-Up Tolerance		V	

Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

622 MHz In, 622 MHz Out BW=877 kHz

Figure 3. Typical Phase Noise Plot

Table 8. Typical RMS Jitter Values

Jitter Bandwidth	RMS Jitter (fs)
OC-48, 12 kHz to 20 MHz	374
OC-192, 20 kHz to 80 MHz	388
OC-192, 4 MHz to 80 MHz	181
OC-192, 50 kHz to 80 MHz	377
Broadband, 800 Hz to 80 MHz	420

Figure 4. Si5325 Typical Application Circuit ($\mathbf{I}^{2} \mathrm{C}$ Control Mode)

Figure 5. Si5325 Typical Application Circuit (SPI Control Mode)

2. Functional Description

The Si5325 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5325 accepts dual clock inputs ranging from 10 to 710 MHz and generates two synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides frequency translation across this operating range. Independent dividers are available for each input clock and output clock, so the Si5325 can accept input clocks at different frequencies and it can generate output clocks at different frequencies. The Si5325 input clock frequency and clock multiplication ratio are programmable through an $I^{2} \mathrm{C}$ or SPI interface. Skyworks Solutions offers a PC-based software utility, DSPLLsim, that can be used to determine the optimum PLL divider settings for a given input frequency/clock multiplication ratio combination that minimizes phase noise and power consumption.
This utility can be downloaded from https://www.skyworksinc.com/en/Products/Timing.
The Si5325 is based on Skyworks Solutions' thirdgeneration DSPLL ${ }^{\circledR}$ technology, which provides frequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5325 PLL loop bandwidth is digitally programmable and supports a range from 150 kHz to 1.3 MHz . The DSPLLsim software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio.
In the case when the input clocks enter alarm conditions, the PLL will freeze the DCO output frequency near its last value to maintain operation with an internal state close to the last valid operating state.
The Si5325 has two differential clock outputs. The electrical format of each clock output is independently programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, the second clock output can be powered down to minimize power consumption.
For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single $1.8,2.5$, or 3.3 V supply.

2.1. Further Documentation

Consult the Skyworks Solutions Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5325. Additional design support is available from Skyworks Solutions through your distributor.
Skyworks Solutions has developed a PC-based software utility called DSPLLsim to simplify device configuration, including frequency planning and loop bandwidth selection.
The FRM and this utility can be downloaded from https://www.skyworksinc.com/en/Products/Timing.

3. Register Map

All register bits that are not defined in this map should always be written with the specified Reset Values. The writing to these bits of values other than the specified Reset Values may result in undefined device behavior. Registers not listed, such as Register 64, should never be written to.

Si5325

Register	D7	D6	D5	D4	D3	D2	D1	D0
129						LOS2_INT	LOS1_INT	
130						FOS2_INT	FOS1_INT	
131						LOS2_FLG	LOS1_FLG	
132					FOS2_FLG	FOS1_FLG		
134	PARTNUM_RO[11:4]							
135	PARTNUM_RO[3:0]				REVID_RO[3:0]			
136	RST_REG	ICAL						
138							LOS2_EN [1:1]	LOS1_EN [1:1]
139			LOS2_EN[0:0]	LOS1_EN[0:0]			FOS2_EN	FOS1_EN
142	INDEPENDENTSKEW1[7:0]							
143	INDEPENDENTSKEW2[7:0]							

4. Register Descriptions

Register 0.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			CKOUT_ALWAYS_ON				BYPASS_REG	
Type	R	R	R / W	R	R	R	R / W	R

Reset value $=00010100$

Bit	Name	Function
$7: 6$	Reserved	
5	CKOUT_ALWAYS_ON	CKOUT Always On. This will bypass the SQ_ICAL function. Output will be available even if SQ_I- CAL is on and ICAL is not complete or successful. See Table 9 on page 51. 0: Squelch output until part is calibrated (ICAL). 1: Provide an output. Note: The frequency may be significantly off until the part is calibrated.
$4: 2$	Reserved	BYPASS_REG 1
Bypass Register. This bit enables or disables the PLL bypass mode. Use only when the device is in VCO freeze or before the first ICAL. Bypass mode is not supported for CMOS output clocks. 0: Normal operation 1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL. Bypass mode is not supported for CMOS outputs.		
0	Reserved	

Register 1.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					CK_PRIOR2 [1:0]	CK_PRIOR1 [1:0]		
Type	R	R	R	R	R/W	R/W		

Reset value $=11100100$

Bit	Name	Function
$7: 4$	Reserved	
$3: 2$	CK_PRIOR2 [1:0]	CK_PRIOR 2. Selects which of the input clocks will be 2nd priority in the autoselection state machine. 00: CKIN1 is 2nd priority. 01: CKIN2 is 2nd priority. 10: Reserved 11: Reserved
1:0	CK_PRIOR1 [1:0]	CK_PRIOR 1. Selects which of the input clocks will be 1st priority in the autoselection state machine. 00: CKIN1 is 1st priority. 01: CKIN2 is 1st priority. 10: Reserved 11: Reserved

Register 2.

Bit	D7	D6	D5	D4	D3	D2	D1					
Name	BWSEL_REG [3:0]											
Type	R/W									R	R	R

Reset value $=01000010$

Bit	Name	Function
7:4	BWSEL_REG [3:0]	BWSEL_REG. Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After BWSEL_REG is written with a new value, an ICAL is required for the change to take effect.
3:0	Reserved	

[^0]
Register 3.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CKSEL_REG [1:0]							
		SQ_ICAL						
Type	R/W	R	R/W	R	R	R	R	

Reset value = 00000101

Bit	Name	Function
7:6	CKSEL_REG[1:0]	CKSEL_REG. If the device is operating in register-based manual clock selection mode (AUTOSEL_REG $=00$), and CKSEL_PIN $=0$, then these bits select which input clock will be the active input clock. If CKSEL_PIN $=1$ and AUTOSEL_REG $=00$, the CS_CA input pin continues to control clock selection and CKSEL_REG is of no consequence. 00: CKIN_1 selected. 01: CKIN_2 selected. 10: Reserved 11: Reserved
5	Reserved	SQ_ICAL. This bit determines if the output clocks will remain enabled or be squelched (dis- abled) during an internal calibration. See Table 9 on page 51. 0: Output clocks enabled during ICAL. 1: Output clocks disabled during ICAL.
4	SQ_ICAL	
$3: 0$	Reserved	

Register 4.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	AUTOSEL_REG [1:0]							
Type	R							

Reset value $=00010010$

Bit	Name	Function
7:6	AUTOSEL_REG [1:0]	AUTOSEL_REG [1:0]. Selects method of input clock selection to be used. 00: Manual (either register or pin controlled, see CKSEL_PIN) 01: Automatic Non-Revertive
10: Automatic Revertive		
11: Reserved		

Register 5.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ICMOS [1:0]							
Type	R/W	R	R	R	R	R	R	

Reset value = 11101101

Bit	Name	Function
$7: 6$	ICMOS [1:0]	ICMOS [1:0]. When the output buffer is set to CMOS mode, these bits determine the output buffer drive strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation. These values assume CKOUT+ is tied to CKOUT-. 00: $8 \mathrm{~mA} / 2 \mathrm{~mA}$. $01: 16 \mathrm{~mA} / 4 \mathrm{~mA}$ $10: 24 \mathrm{~mA} / 6 \mathrm{~mA}$ $11: 32 \mathrm{~mA} / 8 \mathrm{~mA}$
$5: 0$	Reserved	

Register 6.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			SFOUT2_REG [2:0]			SFOUT1_REG [2:0]		
Type	R	R	R/W			R/W		

Reset value = 00101101

Bit	Name	Function
7:6	Reserved	
5:3	SFOUT2_REG [2:0]	SFOUT2_REG [2:0]. Controls output signal format and disable for CKOUT2 output buffer. Bypass mode is not supported for CMOS output clocks. 000: Reserved 001: Disable 010: CMOS (Bypass mode is not supported for CMOS outputs) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS
2:0	SFOUT1_REG [2:0]	SFOUT1_REG [2:0]. Controls output signal format and disable for CKOUT1 output buffer. Bypass mode is not supported for CMOS output clocks. 000: Reserved 001: Disable 010: CMOS (Bypass mode is not supported for CMOS outputs) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS

Register 7.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						FOSREFSEL [2:0]		
Type	R	R	R	R	R	R/W		

Reset value = 00101010

Bit	Name	Function
7:3	Reserved	
2:0	FOSREFSEL [2:0]	FOSREFSEL [2:0]. Selects which input clock is used as the reference frequency for Frequency Off-Set (FOS) alarms. 000: XA/XB (External reference) 001: CKIN1 010: CKIN2 011: Reserved 100: Reserved 101: Reserved 110: Reserved 111: Reserved

Register 8.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	HLOG_2[1:0]	HLOG_1[1:0]				D0	
Type	R/W	R/W	R	R	R	R	

Reset value $=00000000$

Bit	Name	Function
$7: 6$	HLOG_2 [1:0]	HLOG_2 [1:0]. 00: Normal operation 01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10:Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved
$5: 4$		HLOG_1 [1:0]. 00: Normal operation 01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved
$3: 0$	Reserved	

Register 10.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					DSBL2_REG	DSBL1_REG	Reserved	Reserved
Type	R	R	R	R	R/W	R/W	R	R

Reset value $=00000000$

Bit	Name	
$7: 4$	Reserved	
3	DSBL2_REG	DSBL2_REG. This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is selected, the NC2 output divider is also powered down. 0: CKOUT2 enabled 1: CKOUT2 disabled
2	DSBL1_REG	DSBL1_REG. This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is selected, the NC1 output divider is also powered down. 0: CKOUT1 enabled 1: CKOUT1 disabled
$1: 0$	Reserved	

Register 11.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							PD_CK2	PD_CK1
Type	R	R	R	R	R	R	R / W	R / W

Reset value $=01000000$

Bit	Name	Function
$7: 2$	Reserved	
1	PD_CK2	PD_CK2. This bit controls the powerdown of the CKIN2 input buffer. 0: CKIN2 enabled 1: CKIN2 disabled
0	PD_CK1	PD_CK1. This bit controls the powerdown of the CKIN1 input buffer. 0: CKIN1 enabled 1: CKIN1 disabled

Register 12.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	FOS_EN	FOS_THR [1:0]	VALTIME [1:0]					
Type	R/W	R/W	R/W	R	R	R		

Reset value = 00101100

Bit	Name	Function
$7: 5$	FOS_EN	FOS_EN. Frequency Offset Enable globally disables FOS. See the individual FOS enables (FOSX_EN, register 139). 0: FOS disable 1: FOS enabled by FOSx_EN
$6: 5$	FOS_THR [1:0]	FOS_THR [1:0]. Frequency Offset at which FOS is declared: 00: ± 11 to 12 ppm (Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK $01: \pm 48$ to 49 ppm (SMC) $10: \pm 30$ ppm (SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK. $11: \pm 200$ ppm
$4: 3$	VALTIME [1:0]	VALTIME [1:0]. Sets amount of time for input clock to be valid before the associated alarm is removed. $00: 2 \mathrm{~ms}$ $01: 100 \mathrm{~ms}$ $10: 200 \mathrm{~ms}$ $11: 13$ seconds
$2: 0$	Reserved	

Register 13.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					CK2_BAD_PIN	CK1_BAD_PIN		INT_PIN
Type	R	R	R	R	R/W	R/W	R	R/W

Reset value = 00111110

Bit	Name	Function		
$7: 4$	Reserved			
3	CK2_BAD_PIN	CK2_BAD_PIN. The_CK2_BAD status can be reflected on the C2B output pin. 0: C2B output pin tristated 1: C2B status reflected to output pin		
2	CK1_BAD_PIN	CK1_BAD_PIN. The CK1_BAD status can be reflected on the C1B output pin. 0: C1B output pin tristated 1: C1B status reflected to output pin		
1	Reserved	INT_PIN		INT_PIN.
:---				
Reflects the interrupt status on the INT_C1B output pin.				
0: Interrupt status not displayed on INT_C1B output pin. If CK1_BAD_PIN = 0,				
INT_C1B output pin is tristated.				
1: Interrupt status reflected to output pin. Instead, the INT_C1B pin indicates when				
CKIN1 is bad.				

Register 14.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							CK1_ACTV_PIN	CKSEL_PIN
Type	R	Force 1	R	R	R	R	R / W	R/W

Reset value = 11111111

Bit	Name	Function
$7: 2$	Reserved	
1	CK1_ACTV_PIN	CK1_ACTV_PIN. The_CK1_ACTV_REG status bit can be reflected to the CS_CA output pin using the CK1_ACTV_PIN enable function. CK1_ACTV_PIN is of consequence only when pin controlled clock selection is not being used. 0: CS_CA output pin tristated. $1:$ Clock Active status reflected to output pin.
0	CKSEL_PIN	CKSEL_PIN. If manual clock selection is being used, clock selection can be controlled via the CKSEL_REG[1:0] register bits or the CS_CA input pin. This bit is only active when AUTOSEL_REG = Manual. $0: C S _C A ~ p i n ~ i s ~ i g n o r e d . ~ C K S E L _R E G[1: 0] ~ r e g i s t e r ~ b i t s ~ c o n t r o l ~ c l o c k ~ s e l e c t i o n . ~$ $1: C S _C A ~ i n p u t ~ p i n ~ c o n t r o l s ~ c l o c k ~ s e l e c t i o n . ~$

Register 15.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					CK_ACTV_POL	CK_BAD_POL		INT_POL
Type	R	R	R	R	R/W	R/W	R	R/W

Reset value = 11011111

Bit	Name	Function
$7: 4$	Reserved	
3	CK_ACTV_POL	CK_ACTV_POL. Sest the active polarity for the CS_CA signals when reflected on an output pin. 0: Active low 1: Active high
2	CK_BAD_POL	CK_BAD_POL. Sest the active polarity for the INT_C1B and C2B signals when reflected on output pins. 0: Active low 1: Active high
1	Reserved	INT_POL
0	INT_POL. Sets the active polarity for the interrupt status when reflected on the INT_C1B output pin. 0: Active low 1: Active high	

Register 16.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						LOS2_MSK	LOS1_MSK	Reserved
Type	R	R	R	R	R	R / W	R / W	R

Reset value = 00011111

Bit	Name	Function
$7: 3$	Reserved	
2	LOS2_MSK	LOS2_MSK. Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS2_FLG register. 0: LOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: LOS2_FLG ignored in generating interrupt output.
1	LOS1_MSK	LOS1_MSK. Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS1_FLG register. 0: LOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: LOS1_FLG ignored in generating interrupt output.
0	Reserved	

Register 17.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						FOS2_MSK	FOS1_MSK	
Type	R	R	R	R	R	R / W	R / W	R

Reset value = 00111111

Bit	Name	Function
$7: 3$	Reserved	
2	FOS2_MSK	FOS2_MSK. Determines if the FOS2_FLG is used to in the generation of an interrupt. Writes to this register do not change the value held in the FOS2_FLG register. 0: FOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: FOS2_FLG ignored in generating interrupt output.
1	FOS1_MSK	FOS1_MSK. Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg- ister do not change the value held in the FOS1_FLG register. 0: FOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: FOS1_FLG ignored in generating interrupt output.
0	Reserved	

Register 18.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N1_HS [2:0]							
Type	R/W							

Reset value $=00100000$

Bit	Name	Function
$7: 5$	N1_HS [2:0]	N1_HS [2:0]. Sets value for N1 high speed divider which drives NCn_LS ($n=1$ to 2) low-speed divider. 000: $\mathrm{N} 1=4$ Note: Changing the coarse skew via the INC pin is disabled for this value. 001: $\mathrm{N} 1=5$ 010: $\mathrm{N} 1=6$ 011: $\mathrm{N} 1=7$ 100: $\mathrm{N} 1=8$ 101: $\mathrm{N} 1=9$ 110: $\mathrm{N} 1=10$ 111: $\mathrm{N} 1=11$
$4: 0$	Reserved	

Register 31.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					NC1_LS [19:16]			
Type	R	R	R	R	R / W			

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
$3: 0$	NC1_LS $[19: 16]$	NC1_LS [19:16]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. 00000000000000000000 $=1$ $00000000000000000001=2$ $0000000000000000011=4$ $00000000000000000101=6$
		\ldots
		$11111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 32.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC1_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
7:0	NC1_LS [15:8]	NC1_LS [15:8]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. $\begin{aligned} & 00000000000000000000=1 \\ & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 33.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC1_LS [7:0]							
Type	R/W							

Reset value $=00110001$

Bit	Name	Function
7:0	NC1_LS [19:0]	NC1_LS [7:0]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. $\begin{aligned} & 00000000000000000000=1 \\ & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 34.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					NC2_LS [19:16]			
Type	R	R	R	R	R / W			

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
3:0	NC2_LS [19:16]	NC2_LS [19:16]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 000000000000000000000 $=1$ $00000000000000000001=2$ $00000000000000000011=4$ $0000000000000000101=6$
		\ldots
$11111111111111111111=2^{20}$		
Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$		

Register 35.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC2_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	NC2_LS [15:8]	NC2_LS [15:8]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. $00000000000000000000=1$ $00000000000000000001=2$ $00000000000000000011=4$
		\ldots
		$111111111111111111=20000000000000101=6$
		Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 36.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC2_LS [7:0]							
Type	R/W							

Reset value $=00110001$

Bit	Name	Function
7:0	NC2_LS [7:0]	NC2_LS [7:0]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 00000000000000000000 = 1 $00000000000000000001=2$ $00000000000000000011=4$ $00000000000000000101=6$
		\ldots
		$1111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 40.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					N2_LS [19:16]			
Type	R							

Reset value $=11000000$

Bit	Name	Function
$7: 4$	Reserved	
3:0	N2_LS [19:16]	N2_LS [19:16]. Sets the value for the N2 low-speed divider, which drives the phase detector. Must be an even number ranging from 32 to 512 (inclusive). $00000000000000100000=32$ $0000000000000100010=34$ $00000000000000100100=36$ \ldots $00000000001000000000=512$ Valid divider values $=[32,34,36 \ldots 512]$

Register 41.

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | D0 | | |
| :---: | :---: |
| Name | N2_LS [15:8] |
| Type | R/W |

Reset value $=00000000$

Bit	Name	Function
$7: 0$	N2_LS [15:8]	N2_LS [15:8]. Sets the value for the N2 low-speed divider, which drives the phase detector. Must be an even number ranging from 32 to 512 (inclusive).
		$00000000000000100000=32$ $00000000000000100010=34$ $00000000000000100100=36$ \ldots $00000000001000000000=512$

Register 42.

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | D0 | N2_LS [7:0] |
| :---: |
| Name |
| Type |

Reset value = 11111001

Bit	Name	Function
$7: 0$	N2_LS [7:0]	N2_LS [7:0]. Sets the value for the N2 low-speed divider, which drives the phase detector. Must be an even number ranging from 32 to 512 (inclusive).
		$00000000000000100000=32$ $00000000000000100010=34$ $00000000000000100100=36$ \ldots $00000000001000000000=512$ Valid divider values $=[32,34,36 \ldots 512]$

Register 43.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N31 [18:16]		
Type	R	R	R	R	R	R / W		

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N31 [18:16]	N31 [18:16]. Sets value for input divider for CKIN1. 0000000000000000000 $=1$ $0000000000000000001=2$ $0000000000000000010=3$
\ldots	$1111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$	

Register 44.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Type	N31_[15:8]							

Reset value $=00000000$

| Bit | Name | Function |
| :---: | :---: | :--- | :--- |
| $7: 0$ | N31_[15:8] | N31_[15:8].
 Sets value for input divider for CKIN1.
 0000000000000000000 $=1$
 $0000000000000000001=2$
 $0000000000000000010=3$ |
| | | \ldots |
| | | 1111111111111111111 $=2^{19}$
 Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$ |

Register 45.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	D0						
Type	N31_[7:0]						

Reset value $=00001001$

Bit	Name	Function
7:0	N31_[7:0	N31_[7:0]. Sets value for input divider for CKIN1. $\begin{aligned} & 0000000000000000000=1 \\ & 0000000000000000001=2 \\ & 0000000000000000010=3 \end{aligned}$ $1111111111111111111=2^{19}$ Valid divider values=[1, 2, 3, $\ldots, 2^{19}$]

Register 46.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N32_[18:16]		
Type	R	R	R	R	R	R / W		

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N32_[18:16]	N32_[18:16]. Sets value for input divider for CKIN2. $0000000000000000000=1$ $0000000000000000001=2$ $0000000000000000010=3$ \ldots
		1111111111111111111 $=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 47.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Type	N32_[15:8]							

Reset value $=00000000$

Bit	Name	Function
7:0	N32_[15:8]	N32_[15:8]. Sets value for input divider for CKIN2. $\begin{aligned} & 0000000000000000000=1 \\ & 0000000000000000001=2 \\ & 0000000000000000010=3 \end{aligned}$... $1111111111111111111=2^{19}$ Valid divider values=[1, 2, 3, $\ldots, 2^{19}$]

Register 48.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N32_[7:0]							
Type	R/W							

Reset value $=00001001$

Bit	Name	Function
7:0	N32_[7:0]	N32_[7:0]. Sets value for input divider for CKIN2. $\begin{aligned} & 0000000000000000000=1 \\ & 0000000000000000001=2 \\ & 0000000000000000010=3 \end{aligned}$ $1111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 55h.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			CLKIN2RATE_[2:0]			CLKIN1RATE[2:0]		
Type	R	R	R/W			R/W		

Reset value $=00000000$

Bit	Name	Function
7:6	Reserved	
5:3	CLKIN2RATE[2:0]	CLKIN2RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10-27 MHz 001: $25-54 \mathrm{MHz}$ 002: $50-105 \mathrm{MHz}$ 003: $95-215 \mathrm{MHz}$ 004: $190-435 \mathrm{MHz}$ 005: $375-710 \mathrm{MHz}$ 006: Reserved 007: Reserved
2:0	CLKIN1RATE [2:0]	CLKIN1RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. $\begin{aligned} & \text { 000: } 10-27 \mathrm{MHz} \\ & \text { 001: } 25-54 \mathrm{MHz} \\ & 002: 50-105 \mathrm{MHz} \\ & 003: 95-215 \mathrm{MHz} \\ & 004: 190-435 \mathrm{MHz} \\ & 005: 375-710 \mathrm{MHz} \\ & \text { 006: Reserved } \\ & \text { 007: Reserved } \end{aligned}$

Register 128.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							CK2_ACTV_REG	CK1_ACTV_REG
Type	R							

Reset value $=00100000$

Bit	Name	Function
$7: 2$	Reserved	1 CK2_ACTV_REG CK2_ACTV_REG. Indicates if CKIN2 is currently the active clock for the PLL input. 0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1. 1: CKIN2 is the active input clock. 0 CK1_ACTV_REG CK1_ACTV_REG. Indicates if CKIN1 is currently the active clock for the PLL input. 0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1. 1: CKIN1 is the active input clock.

Register 129.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						LOS2_INT	LOS1_INT	
Type	R							

Reset value $=00000110$

Bit	Name	Function
$7: 3$	Reserved	
2	LOS2_INT	LOS2_INT. Indicates the LOS status on CKIN2. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN2 input.
1	LOS1_INT	LOS1_INT. Indicates the LOS status on CKIN1. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN1 input.
0	Reserved	

Register 130.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						FOS2_INT	FOS1_INT	
Type	R							

Reset value = 00000001

Bit	Name	Function
$7: 3$	Reserved	
2	FOS2_INT	CKIN2 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN2 input.
1	FOS1_INT	CKIN1 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN1 input.
0	Reserved	

Register 131.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						LOS2_FLG	LOS1_FLG	
Type	R	R	R	R	R	R / W	R / W	R

Reset value = 00011111

Bit	Name	Function
$7: 3$	Reserved	
2	LOS2_FLG	CKIN2 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to this bit.
1	LOS1_FLG	CKIN1 Loss-of-Signal Flag. 0: Normal operation 1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to this bit.
0	Reserved	

Register 132.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					FOS2_FLG	FOS1_FLG		
Type	R	R	R	R	R / W	R / W	R	R

Reset value $=00000010$

Bit	Name	Function
$7: 4,0$	Reserved	
3	FOS2_FLG	CLKIN_2 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing 0 to this bit.
2	FOS1_FLG	CLKIN_1 Frequency Offset Flag. 0: Normal operation 1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing 0 to this bit.
1	Reserved	

Register 134.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PARTNUM_RO [11:4]							
Type	R							

Reset value $=00000001$

Bit	Name		Function
$7: 0$	PARTNUM_RO [11:0]	Device ID (1 of 2). 0000 0001 1001: Si5325	

Register 135.

Bit	D7	D6	D5	D4	D3	D2	D1	
Name	PARTNUM_RO [3:0]				REVID_RO [3:0]			
Type	R							

Reset value $=10100010$

Bit	Name	Function
$7: 4$	PARTNUM_RO [11:0]	Device ID (2 of 2). 0000 0001 1001: Si5325
$3: 0$	REVID_RO [3:0]	Indicates Revision Number of Device. 0000: Revision A 0001: Revision B 0010: Revision C Others: Reserved

Register 136.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	RST_REG	ICAL						
Type	R/W	R/W	R	R	R	R	R	R

Reset value $=00000000$

Bit	Name	Function
7	RST_REG	Internal Reset (Same as Pin Reset). Note: The I2C (or SPI) port may not be accessed until 10 ms after RST_REG is asserted. 0: Normal operation. 1: Reset of all internal logic. Outputs disabled or tristated during reset.
6	ICAL	Start an Internal Calibration Sequence. For proper operation, the device must go through an internal calibration sequence. ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be present to begin ICAL. Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take effect. 0: Normal operation. 1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-calibra- tion, LOL will go low.
$5: 0$	Reserved	

Register 138.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							LOS2_EN [1:1]	LOS1_EN [1:1]
Type	R	R	R	R	R	R	R / W	R / W

Reset value $=00001111$

Bit	Name	Function
$7: 2$	Reserved	
1	LOS2_EN [1:0]	Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2). Note: LOS2_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. SEe the Family Reference Man- ual for details.
0	LOS1_EN [1:0]	Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Man- ual for details.

Register 139.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			LOS2_EN [0:0]	LOS1_EN [0:0]			FOS2_EN	FOS1_EN
Type	R	R	R/W	R/W	R	R	R / W	R / W

Reset value = 11111111

Bit	Name	
$3: 2$,	Reserved	Function
5	LOS2_EN [1:0]	Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2). Note: LOS2_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details
4	LOS1_EN [1:0]	Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring.
01: Reserved.		
10: Enable LOSA monitoring.		
		11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.
1	FOS2_EN	Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. $1:$ Enable FOS monitoring.
0	FOS1_EN	Enables FOS on a Per Channel Basis. $0:$ Disable FOS monitoring. $1:$ Enable FOS monitoring.

Register 142.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW1 [7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW1 [7:0]	INDEPENDENTSKEW1. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Default $=0$.

Register 143.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW2 [7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPEND-ENTSKEW2 [7:0]	INDEPENDENTSKEW2. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Default = 0.

Table 9. CKOUT_ALWAYS_ON and SQICAL Truth Table

CKOUT_ALWAYS_ON	SQICAL	Results	Output to Output Skew Preserved?
0	0	CKOUT OFF until after the first ICAL	N
0	1	CKOUT OFF until after the first successful ICAL (i.e., when LOL is low)	Y
1	0	CKOUT always ON, including during an ICAL	N
1	1	CKOUT always ON, including during an ICAL	Y

Table 10 lists all of the register locations that should be followed by an ICAL after their contents are changed.

Table 10. Register Locations Requiring ICAL

Addr	Register
0	BYPASS_REG
0	CKOUT_ALWAYS_ON
1	CK_PRIOR2
1	CK_PRIOR1
2	BWSEL_REG
4	HIST_DEL
5	ICMOS
7	FOSREFSEL
9	HIST_AVG
10	DSBL2_REG
10	DSBL1_REG
11	PD_CK2
11	PD_CK1
19	FOS_EN
19	FOS_THR
19	VALTIME
19	LOCKT
25	N1_HS
31	NC1_LS
34	NC2_LS
40	N2_HS
40	N2_LS
43	N31
46	N32
55	CLKIN2RATE
55	CLKIN1RATE

5. Pin Descriptions: Si5325

Table 11. Si5325 Pin Descriptions

Pin \#	Pin Name	I/O	Signal Level	Description
1	$\overline{\mathrm{RST}}$	1	LVCMOS	External Reset. Active low input that performs external hardware reset of device. Resets all internal logic to a known state and forces the device registers to their default value. Clock outputs are tristated during reset. The part must be programmed after a reset or power-on to get a clock output. See Family Reference Manual for details. This pin has a weak pull-up.
$\begin{aligned} & 2,7,9,14, \\ & 18,30,33 \end{aligned}$	NC			No Connect. This pin must be left unconnected for normal operation.
3	INT_C1B	0	LVCMOS	Interrupt/CKIN1 Invalid Indicator. This pin functions as a device interrupt output or an alarm output for CKIN1. If used as an interrupt output, INT_PIN must be set to 1. The pin functions as a maskable interrupt output with active polarity controlled by the INT_POL register bit. If used as an alarm output, the pin functions as a LOS (and optionally FOS) alarm indicator for CKIN1. Set CK1_BAD_PIN = 1 and $I N T _P I N=0$. $0=$ CKIN1 present. 1 = LOS (FOS) on CKIN1. The active polarity is controlled by $C K _B A D _P O L$. If no function is selected, the pin tristates.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.				

Table 11. Si5325 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
4	C2B	0	LVCMOS	CKIN2 Invalid Indicator. This pin functions as a LOS (and optionally FOS) alarm indicator for CKIN2 if CK2_BAD_PIN $=1$. $0=$ CKIN2 present. 1 = LOS (FOS) on CKIN2. The active polarity can be changed by $C K _B A D _P O L$. If $C K 2 _B A D _P I N=0$, the pin tristates.
$\begin{gathered} 5,10,11 \\ 15,32 \end{gathered}$	$V_{D D}$	$V_{\text {DD }}$	Supply	Supply. The device operates from a $1.8,2.5$, or 3.3 V supply. Bypass capacitors should be associated with the following VDD pins: A $1.0 \mu \mathrm{~F}$ should also be placed as close to device as is practical.
$\begin{gathered} 6,8,19, \\ 2031 \end{gathered}$	GND	GND	Supply	Ground. Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device.
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	CKIN2+ CKIN2-	1	Multi	Clock Input 2. Differential input clock. This input can also be driven with a single-ended signal. Input frequency range is 10 to 710 MHz .
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	CKIN1+ CKIN1-	1	Multi	Clock Input 1. Differential input clock. This input can also be driven with a single-ended signal. Input frequency range is 10 to 710 MHz .
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.				

Table 11. Si5325 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
21	CS_CA	I/O	LVCMOS	Input Clock Select/Active Clock Indicator. Input: In manual clock selection mode, this pin functions as the manual input clock selector if the CKSEL_PIN is set to 1 . $0=$ Select CKIN1. 1 = Select CKIN2. If CKSEL_PIN $=0$, the CKSEL_REG register bit controls this function. If configured as input, must be set high or low. Output: In automatic clock selection mode, this pin indicates which of the two input clocks is currently the active clock. If alarms exist on both clocks, CA will indicate the last active clock that was used before entering the VCO freeze state. The CK_ACTV_PIN register bit must be set to 1 to reflect the active clock status to the CA output pin. $0=$ CKIN1 active input clock. 1 = CKIN2 active input clock. If CK_ACTV_PIN $=0$, this pin will tristate. The CA status will always be reflected in the CK_ACTV_REG read only register bit.
22	SCL	1	LVCMOS	Serial Clock/Serial Clock. This pin functions as the serial clock input for both SPI and $1^{2} \mathrm{C}$ modes. This pin has a weak pulldown.
23	SDA_SDO	I/O	LVCMOS	Serial Data. In $I^{2} C$ control mode (CMODE $=0$), this pin functions as the bidirectional serial data port. In SPI control mode (CMODE = 1), this pin functions as the serial data output.
$\begin{aligned} & 25 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A0 } \end{aligned}$	1	LVCMOS	Serial Port Address. In $I^{2} \mathrm{C}$ control mode (CMODE $=0$), these pins function as hardware controlled address bits. The $\mathrm{I}^{2} \mathrm{C}$ address is 1101 [A2] [A1] [A0]. In SPI control mode (CMODE = 1), these pins are ignored. This pin has a weak pulldown.
26	A2_ $\overline{S S}$	1	LVCMOS	Serial Port Address/Slave Select. In $I^{2} \mathrm{C}$ control mode (CMODE $=0$), this pin functions as a hardware controlled address bit [A2]. In SPI control mode (CMODE = 1), this pin functions as the slave select input. This pin has a weak pulldown.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.				

Table 11. Si5325 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
27	SDI	1	LVCMOS	Serial Data In. In $I^{2} C$ control mode (CMODE $=0$), this pin is ignored. In SPI control mode (CMODE = 1), this pin functions as the serial data input. This pin has a weak pulldown.
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	CKOUT1CKOUT1+	0	Multi	Output Clock 1. Differential output clock with a frequency range of 10 MHz to 1.4175 GHz . Output signal format is selected by SFOUT1_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	CKOUT2CKOUT2+	0	Multi	Output Clock 2. Differential output clock with a frequency range of 10 MHz to 1.4175 GHz . Output signal format is selected by SFOUT2_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.
36	CMODE	1	LVCMOS	Control Mode. Selects $\mathrm{I}^{2} \mathrm{C}$ or SPI control mode for the Si 5325 . $0=I^{2} \mathrm{C}$ Control Mode. 1 = SPI Control Mode. Must not float.
GND PAD	GND	GND	Supply	Ground Pad. The ground pad must provide a low thermal and electrical impedance to a ground plane.

6. Ordering Guide

Ordering Part Number	Output Clock Frequency Range	Package	ROHS6, Pb-Free	Temperature Range
Si5325A-C-GM*	$.002-945 \mathrm{MHz}$ $970-1134 \mathrm{MHz}$ $1.213-1.4 \mathrm{GHz}$	36 -Lead $6 \times 6 \mathrm{~mm}$ QFN	Yes	-40 to $85^{\circ} \mathrm{C}$
$\mathrm{Si} 5325 \mathrm{~B}-\mathrm{C}-\mathrm{GM}^{*}$	$.002-808 \mathrm{MHz}$	36 -Lead $6 \times 6 \mathrm{~mm}$ QFN	Yes	-40 to $85^{\circ} \mathrm{C}$
$\mathrm{Si} 5325 \mathrm{C}-\mathrm{C}-\mathrm{GM}^{*}$	$.002-346 \mathrm{MHz}$	36-Lead $6 \times 6 \mathrm{~mm}$ QFN	Yes	-40 to $85^{\circ} \mathrm{C}$
*Note: Not recommended for new designs. For alternatives, see the Si533x family.				

7. Package Outline: 36-Pin QFN

Figure 6 illustrates the package details for the Si5325. Table 12 lists the values for the dimensions shown in the illustration.

Figure 6. 36-Pin Quad Flat No-lead (QFN)
Table 12. Package Dimensions

Symbol	Millimeters		
	Min	Nom	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	6.00 BSC		
D2	3.95	4.10	4.25
e	0.50 BSC		
E	6.00 BSC		
E2	3.95	4.10	4.25

Symbol	Millimeters		
	Min	Nom	Max
L	0.50	0.60	0.70
θ	-	-	12°
aaa	-	-	0.10
bbb	-	-	0.10
ccc	-	-	0.08
ddd	-	-	0.10
eee	-	-	0.05

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. Land Pattern: 36-Pin QFN

Figure 7. 36-Pin QFN Land Pattern

Table 13. PCB Land Pattern Dimensions

Dimension	MIN	MAX
e	0.50 BSC .	
E	5.42 REF.	
D	5.42 REF.	
E2	4.00	4.20
D2	4.00	4.20
GE	4.53	-
GD	4.53	-
X	-	0.28
Y	0.89 REF.	
ZE	-	6.31
ZD	-	6.31

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI $\mathrm{Y} 14.5 \mathrm{M}-1994$ specification.
3. This Land Pattern Design is based on IPC-SM-782 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm .

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be $1: 1$ for the perimeter pads.
9. A 4×4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad.

Card Assembly

10. A No-Clean, Type-3 solder paste is recommended.
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Si5325

9. Top Marking

9.1. Si5325 Top Marking (QFN)

9.2. Top Marking Explanation

Mark Method:	Laser	
Font Size:	0.80 mm Right-Justified	
Line 1 Marking:	Si5325Q	Customer Part Number Q = Speed Code: A, B, C See Ordering Guide for options.
Line 2 Marking:	C-GM	C = Product Revision G = Temperature Range -40 to $85{ }^{\circ} \mathrm{C}($ RoHS6 $)$ M $=$ QFN Package
Line 3 Marking:	YYWWRF	YY = Year WW = Work Week R = Die Revision F = Internal code Assigned by the Assembly House. Corresponds to the year and work week of the mold date.
Line 4 Marking:	Pin 1 Identifier	Circle = 0.75 mm Diameter Lower-Left Justified
	XXXX	Internal Code

Document Change List

Revision 0.23 to Revision 0.24

- Clarified that the two outputs have a common, higher frequency source on page 1.
- Changed LVTTL to LVCMOS in Table 2, "Absolute Maximum Ratings," on page 5.
- Added Figure 1, "Typical Phase Noise Plot," on page 4.
- Updated "5. Pin Descriptions: Si5325".
- Removed references to latency control, INC, and DEC.
- Changed font for register names to underlined italics.
- Updated "6. Ordering Guide" on page 56.
- Added "8. Land Pattern: 36-Pin QFN".

Revision 0.24 to Revision 0.25

- Updated Section "5. Pin Descriptions: Si5325" on page 52.

Revision 0.25 to Revision 0.26

- Removed Figure 1. "Typical Phase Noise Plot."
- Changed pins 11 and 15 from NC to VDD in " 5 . Pin Descriptions: Si5325".

Revision 0.26 to Revision 0.3

- Changed 1.8 V operating range to $\pm 5 \%$.
- Updated Table 1 on page 4.
- Updated Table 2 on page 5.
- Added page 14.
- Updated "2. Functional Description" on page 16.
- Clarified "5. Pin Descriptions: Si5325" on page 52 including pull-up/pull-down.

Revision 0.3 to Revision 0.4

- Added register map
- Lowered minimum CKOUT frequency
- Updated spec tables
- ESD tolerance, Table 2 on page 5
- Minimum input and output clock frequencies, Table 1 on page 4
- Absolute maximum VDD voltage, Table 2 on page 5
- Added to spec table
- CKIN voltage limits, Table 2 on page 5
- Typical jitter and phase noise values, Table 1 on page 4
- No bypass mode with CMOS outputs

Revision 0.4 to Revision 0.5

- Expanded electrical specification tables 1 through 7.
- Removed support for CMOS outputs in Bypass mode.
- Corrected minor errors in register map section.
- Updated " Features" on page 1".
- Added "not recommended for new designs" language.
- Updated Table 5 on page 52.
- Updated "6. Ordering Guide" on page 56.
- Removed note from " 5 . Pin Descriptions: Si5325" on page 52.

Revision 0.5 to Revision 1.0

- Updated logo.
- Transitioned to full production.

SKYWORKS

ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!
www.skyworksinc.com/CBPro

I

?
Portfolio
www.skyworksinc.com/ia/timing

SW/HW
www.skyworksinc.com/CBPro

Quality
www.skyworksinc.com/quality

Support \& Resources
www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.
 registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock \& Timer Development Tools category:
Click to view products by Silicon Labs manufacturer:
Other Similar products are found below :
AD9517-0A/PCBZ AD9517-2A/PCBZ AD9522-4/PCBZ AD9520-5PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2880EVKIT\# MAX2750EVKIT MAX2752EVKIT ADCLK946PCBZ ADCLK946/PCBZ MAX2622EVKIT EKIT01-HMC1032LP6G Si5332-8IX-EVB RV-2251-C3-EVALUATION-BOARD Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC8364LP6G EV1HMC8362LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B EVAL01-HMC988LP3E TS3002DB LMX2487E-EVM MIKROE-2481 2045 EKIT01-HMC835LP6G EKIT01-HMC834LP6GE TS3006DB DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261HMC739LP4 ADCLK925/PCBZ AD9522-0/PCBZ AD9520-4/PCBZ AC164147 DFR0469

[^0]: 20

