Si886xxISO-EVB

SKYWORKS

Si886xxISO-EVB UsER's GuIDE

Description

This document describes the operation of the Si886xxISO-EVB.

Kit Contents

The Si886xxISO Evaluation Kit contains the following items:

- Si886xxISO-EVB
- Si88621ED-IS installed on the evaluation board.

Si886xxISO-EVB Overview

Si886xxISO-EVB

1. Hardware Overview and Setup

The default configuration of the Si886xxISO-EVB demonstrates the digital isolation capabilities of the installed Si88621ED-IS as well as its dc-dc converter performance. In this configuration, the dc-dc converter is enabled, the primary side digital supply is sourced by an external regulator circuit, and the secondary side digital supply is sourced by the output of the converter. This EVB configuration has a jumper installed at JP9 in the ON position, JP13 has a jumper installed, and the remaining jumpers not populated.
Note: Do not place jumpers across JP10 or JP11. These are additional test points for VDDA, GNDA and GNDB, and VOUT respectively.

1.1. DC-DC Converter Input and Output

Supply power to the EVB by applying 24 Vdc to VIN at terminal block J1. LED D21 above terminal block J1 illuminates to show power applied to primary side of the converter.
The isolated dc-dc output, VOUT, is available at terminal block J2. The populated values for R5 and R6 produce a 5 V output at VOUT capable of sourcing up to 5 W to an external load connected to terminal block J2. LED D22 above the terminal block J 2 illuminates when the dc-dc converter is operating.
VIN and VOUT test points are available along the upper edge of the EVB.

1.2. Digital Isolator Supplies

The A-side power is provided by a regulator circuit referenced to VREGA pin of the Si888621ED-IS. VIN is stepped down from 24 V to approximately 4.3 V and applied to VDDA pin.
The B-side power is supplied by the output of the dc-dc converter through JP13.

1.3. Digital Signals

The EVB has a series of header pins for connecting to each digital channel. The inside conductor of each 2×1 header is connected to the device pin and the outer conductor is tied to ground through a resistor of 499Ω. Connect digital signals to each side of the Si886xxISO-EVB through a two-row ribbon cable with one row grounded.

- Channel 1 transmits from A1 (JP1 pin 2) to B1 (JP4 pin 1).
- Channel 2 transmits from B2 (JP5 pin 1) to A2 (JP2 pin 2).

Note: The digital input signal should not exceed the power supply of the respective side.

1.4. Transformer Current Sensing

Primary side magnetizing current across the sense resistor R12, can be observed by probing TP20, RSNS with reference to TP33, GNDP.

2. Alternative Configurations

2.1. Disabling the DC-DC Converter

The SH_FC input (U1 pin 7) disables the dc-dc converter. JP9 controls the SH_FC input, enabling the converter when pulled low, ON, and disabling the converter when pulled high, OFF. To disable the dc-dc converter, place the jumper in the OFF position on JP9.
If interfacing to an external controller through the JP9 header, the controller must drive SH low for normal operation and high to disable the dc-dc.
Note: When the dc-dc converter is disabled, the B-side can be powered by an active high digital input on the B-side. Ensure B2 input is tri-state or driven low when VDDB is left floating or grounded.

2.2. 3.3 V DC-DC Converter Output

To change VOUT to 3.3 V , change R 5 to $43.2 \mathrm{k} \Omega$ and R 6 to $20.0 \mathrm{k} \Omega$.

2.3. Alternate Supply for VDDA

To bypass the regulator circuit and supply VDDA from a separate supply, remove Q2 and connect positive power supply through JP9 pin 3 and connect the supply return to J 1 pin 2.

2.4. Alternate Supply for VDDB

To supply VDDB from a separate supply, remove the jumper on JP13 and supply desired power through JP13 pin 2 and connect the supply return to J 2 pin 1 .

Si886xxISO-EVB

3. Quick Reference Tables

Table 1. Test Point Descriptions

Test Point	Description	Referenced to
TP1	VIN	GNDA/GNDP
TP2	GNDA/GNDP	N/A
TP3	VOUT	GNDB
TP4	GNDB	N/A
TP5	SHDN	GNDA/GNDP
TP19	COMP	GNDB
TP20	RSNS	GNDA/GNDP
TP33	GNDP	N/A

Table 2. Jumper Descriptions

Jumper	PIN 1*	PIN 2*	PIN 3*	Default Position	Description
JP1	GNDA (through 499 Ω)	A1	-	Not Installed	Digital Isolator Connector
JP2	GNDA (through 499 Ω)	A2	-	Not Installed	Digital Isolator Connector
JP5	B1	GNDB (through 499 Ω)	-	Not Installed	Digital Isolator Connector
JP6	B2	GNDB (through 499 Ω)	-	Not Installed	Digital Isolator Connector
JP9	GNDA	SHDN JP10 VIN	VDDA	Installed (SHDN - GNDA)	DC-DC Converter Enabled
JP11	GNDB	VOUT	-	Not Installed	DO NOT SHORT - test points only
JP13	VDDB	VOUT	-	Installed	DO NOT SHORT - test points only

*Note: Pin numbering is from left to right.

4. Si886xxISO-EVB Schematics

Input Power Supply
Valid range: $24 \mathrm{~V}+/-10 \%$

Si886xxISO-EVB

Figure 2. Si886xxISO-EVB Schematic (2 of 2)

5. Si886xxISO-EVB Layout

Figure 3. Si886xxISO-EVB Layout

Si886xxISO-EVB

6. Bill of Materials

Table 3. Si886xxISO-EVB Bill of Materials

Part Reference	Description	Manufacturer	Manufacturer Part Number
C2	CAP, $10 \mu \mathrm{~F}, 50 \mathrm{~V}, \pm 20 \%$, X7R, 1210	Venkel	C1210X7R500-106M
C4	CAP, $10 \mu \mathrm{~F}, 10 \mathrm{~V}, \pm 20 \%$, X7R, 1206	Venkel	C1206X7R100-106M
C5 C9 C12 C14	CAP, $0.1 \mu \mathrm{~F}, 10 \mathrm{~V}, \pm 10 \%$, X7R, 0603	Venkel	C0603X7R100-104K
C6	CAP, $0.47 \mu \mathrm{~F}, 16 \mathrm{~V}, \pm 10 \%, \mathrm{X} 7 \mathrm{R}, 0805$	Venkel	C0805X7R160-474K
C8	CAP, $100 \mathrm{pF}, 50 \mathrm{~V}, \pm 10 \%, \mathrm{X} 7 \mathrm{R}, 0603$	Venkel	C0603X7R500-101K
C10	CAP, $22 \mu \mathrm{~F}, 25 \mathrm{~V}, \pm 10 \%$, X7R, 1210	Venkel	C1210X7R250-226M
C11	CAP, $1.5 \mathrm{nF}, 25 \mathrm{~V}, \pm 10 \%$, X5R, 0603	Venkel	C0603X5R250-152K
C18	CAP, $0.047 \mu \mathrm{~F}, 100 \mathrm{~V}, \pm 10 \%$, X7R, 0805	Venkel	C0805X7R101-473K
C19	CAP, 68 pF, $100 \mathrm{~V}, \pm 10 \%, \mathrm{C} 0 \mathrm{G}, 0603$	Venkel	C0603C0G101-680K
D1	DIO, SUPER BARRIER, $50 \mathrm{~V}, 5.0 \mathrm{~A}$, SMA	Diodes Inc.	SBRT5A50SA
D6	DIO, FAST, 200 V, 1.0A, PowerDI-123	Diodes Inc.	DFLU1200-7
D7	RES, 0Ω 1A, ThickFilm, 0603	Venkel	CR0603-16W-000
D20	DIO, ZENER, $28 \mathrm{~V}, 500 \mathrm{~mW}$, SOD123	On Semi	MMSZ5255BT1G
D21 D22	LED, RED, $631 \mathrm{nM}, 20 \mathrm{~mA}, 2 \mathrm{~V}, 54 \mathrm{mcd}$, 0603	Lite-On	LTST-C190KRKT
J1 J2	CONN, TERM BLOCK 2POS, 5MM PCB	Phoenix Contact	1729018
JP1 JP2 JP5 JP6 JP10 JP11 JP13	Header, $2 \times 1,0.1$ " pitch, Tin Plated	Samtec	TSW-102-07-T-S
JP9	Header, 3x1, 0.1" pitch, Tin Plated	Samtec	TSW-103-07-T-S
JS9 JS13	Shunt, $1 \times 2,0.1$ " pitch, Tin plating	Samtec	SNT-100-BK-T
MH1 MH2 MH3 MH4	HDW, Screw, 4-40 x 1/4" Pan Head, Slotted, Nylon	Richco Plastic Co	NSS-4-4-01
Q1	TRANSISTOR, MOSFET, N-CHNL, 100 V, 3.7A, 3W, Switching, SOT223	Fairchild	FDT3612
Q2	TRANSISTOR, NPN, $30 \mathrm{~V}, 600 \mathrm{~mA}$, SOT23	On Semi	MMBT2222LT1
R5	RES, 49.9K, 1/16W, $\pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-16W-4992F
R6	RES, 13.3K, 1/16W, $\pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-16W-1332F
R7	RES, 100K, 1/10W, $\pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-10W-1003F
R8	RES, $27.4 \Omega, 1 / 10 \mathrm{~W}, \pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-10W-27R4F
R12	RES, $0.1 \Omega, 1 / 2 \mathrm{~W}, \pm 1 \%$, ThickFilm, 1206	Venkel	LCR1206-R100F
R13	RES, 4.32K, 1/10W, $\pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-10W-4321F
R14	RES, 19.6K, 1/16W, $\pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-16W-1962F

Table 3. Si886xxISO-EVB Bill of Materials

Part Reference	Description	Manufacturer	Manufacturer Part Number
R15	RES, 10K, 1/10W, $\pm 1 \%$, ThickFilm, 0805	Venkel	CR0805-10W-1002F
R16	RES, $82.0 \Omega, 1 / 10 \mathrm{~W}, \pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-10W-82R0F
R21	RES, $69.8 \mathrm{~K}, 1 / 16 \mathrm{~W}, \pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-16W-6982F
R22	RES, 10K, 1/10W, $\pm 5 \%$, ThickFilm, 0603	Venkel	CR0603-10W-103J
R24 R25 R28 R29	RES, $499 \Omega, 1 / 10 \mathrm{~W}, \pm 1 \%$, ThickFilm, 0603	Venkel	CR0603-10W-4990F
$\begin{gathered} \mathrm{SO} 1 \mathrm{SO} 2 \mathrm{SO} 3 \\ \text { SO4 } \end{gathered}$	HDW, STANDOFF, 1/4" HEX, 4-40x3/4", NYLON	Keystone	1902D
T1	TRANSFORMER, Flyback, $25 \mu \mathrm{H}$ Primary, 500 nH Leakage, 3:1, SMT	UMEC	UTB02205s
TP1 TP2 TP3 TP4 TP5 TP19 TP20 TP33	TESTPOINT, BLACK, PTH	Kobiconn	151-203-RC
U1	IC, ISOLATOR, DC-DC External Switch, Freq Control, 2 Digital Ch, SO20 WB	Skyworks	Si88621ED-IS

Si886xxISO-EVB

7. Si886xxISO-EVB Ordering Guide

Table 4. Si886xxISO-EVB Ordering Guide

Ordering Part Number (OPN)	Description
Si886xxISO-KIT	Si886xx dc-dc digital isolator evaluation board kit

Portfolio
www.skyworksinc.com

Quality
www.skyworksinc.com/quality

Support \& Resources

www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5 ${ }^{\circledR}$, SkyOne ${ }^{\circledR}$, SkyBlue ${ }^{\text {TM }}$, Skyworks Green ${ }^{\text {™ }}$, Clockbuilder ${ }^{\circledR}$, DSPLL® ${ }^{\oplus}$, ISOmodem ${ }^{\circledR}$, ProSLIC ${ }^{\circledR}$, and SiPHY ${ }^{\circledR}$ are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by Silicon Labs manufacturer:
Other Similar products are found below :
DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE I2C-CPEV/NOPB ISO35TEVM-434 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX9286COAXEVKIT\# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT\# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT\# MAXCAM705OV635AAA\# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB\# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT\# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVAL-ADM2567EEBZ EVAL-ADN4654EBZ MAX9275COAXEVKIT\# MAX2202XEVKIT\#

