

FULLY INTEGRATED Z-WAVE[®] WIRELESS MODULE

The Silicon Labs ZM5202 module is a low-cost fully integrated Z-Wave module in a small 12.5mm x 13.6mm x 1.9mm form factor. It is an ideal solution for home control applications such as access control, appliance control, AV control, building automation, energy management, lighting, security, and sensor networks in the "Internet of Things".

It contains all the required passive components, including the crystal and a SAW filter to provide a complete Z-Wave system. The ZM5202 module remains pad and pin compatible with the ZM3102 and the ZM4102 Z-Wave modules.

The ZM5202 module is based on an 8-bit 8051 CPU core, which is optimized to handle the data and link management requirements of a Z-Wave node. The patented Z-Wave protocol supports automatic retransmissions, collision avoidance mechanisms, frame acknowledgements, frame CRCs, frequency agility, and full mesh routing to ensure a highly reliable and robust wireless communication solution.

An integrated baseband controller, sub-1 GHz radio transceiver, a comprehensive set of hardware peripherals, 16kB of SRAM, and 128kB of Flash memory is available for OEM applications and the Z-Wave protocol stack.

Features

- Pad and pin compatible with the ZM3102 and ZM4102
- ITU G.9959 compliant

Module

- Optimized 8051 CPU Core
- 128kB Flash
- 16kB SRAM
- UART with speed up to 230.4kbps
- SPI with speed up to 8MHz
- 2 Interrupt Inputs
- 4-channel 12/8-bit rail-to-rail ADC with VDD/internal/external voltage reference
- PWM Output
- 10 General Purpose IOs
- Hardware AES-128 security engine
- 1000 step dimmer (TRIAC/FET)
- Power-On-Reset/Brown-out Detection
- Supply voltage range from 2.3V to 3.6V for optional battery operation
- TX mode current typ. 36mA@0dBm
- RX mode current typ. 32mA
- Normal mode current typ. 15mA
- Sleep mode current typ. 1µA
- Wake-up timer current typ. 700nA
- Less than 1ms cold start-up time

Radio Transceiver

- Receiver sensitivity with SAW filter down to -103dBm @ 9.6kbps
- Transmit power with SAW filter up to +4dBm
- Z-Wave 9.6/40/100kbps data rates
- Supports all Z-Wave sub-1 GHz frequency bands (865.2 MHz to 926.3 MHz)
- Supports multi-channel frequency agility and listen before talk
- Regulatory Compliance ACMA: AS/NZS 4268 CE: EN 300 220/489 FCC: CFR 47 Part 15 IC: RSS-GEN/210 MIC: ARIB STD-T108

1 CONTENT

2	0\	VERVIE	N	4
	2.1	CPU		5
	2.2	Perif	HERALS	5
	2.2	2.1	Advanced Encryption Standard Security Processor	5
	2.2	2.2	Analog-to-Digital Converter	5
	2.2	2.3	Brown-Out Detector / Power-On-Reset	6
	2.2	2.4	Crystal Driver and System Clock	6
	2.2	2.5	Dimmer	6
	2.2	2.6	General Purpose Input/Output	7
	2.2	2.7	General Purpose Timer / Pulse Width Modulator	7
	2.2	2.8	Interrupt Controller	8
	2.2	2.9	Light-Emitting Diode Contoller	8
	2.2	2.10	Reset Controller	8
	2.2	2.11	Serial Peripheral Interface	9
	2.2	2.12	Timers	. 10
	2.2	2.13	Universal Asynchronous Receiver / Transmitter	. 10
	2.2	2.14	Wake-Up Timer	. 10
	2.2	2.15	Watchdog	. 10
	2.2	2.16	Wireless Transceiver	. 11
	2.3	Mem	ORY MAP	. 11
	2.4	Mod	ule Programming	. 12
	2.4	4.1	Entering In-System Programming Mode	. 12
	2.5	Pow	er Supply Regulator	. 12
3	ту			12
5				
4	PII	N CONF	IGURATION	. 14
	4.1	Pin F	UNCTIONALITY	. 15
_				40
5	EL	ECTRIC	AL CHARACTERISTICS	. 18
	5.1	TEST	CONDITIONS	. 18
	5.2	1.1	Typical Values	. 18
	5.2	1.2	Minimum and Maximum Values	. 18
	5.2	Abso	LUTE MAXIMUM RATINGS	. 19
	5.3	Gene	ral Operating Ratings	. 19
	5.4	CURR	ENT CONSUMPTION	. 19
	5.5	Syste	M TIMING	. 20
	5.6	Non	VOLATILE MEMORY	. 21
	5.7	Anal	OG-TO-DIGITAL CONVERTER	. 22
	5.8	Gene	RAL PURPOSE INPUT OUTPUT	. 22
	5.9	RF C	HARACTERISTICS	. 24
	5.9	9.1	Transmitter	. 24
	5.9	9.2	Receiver	. 25
	5.9	9.3	Regulatory Compliance	. 27
6	7-1	WAVF	REQUENCIES	. 28
7	M	ODULE	INFORMATION	. 29

SILICON LABS

Datasheet: ZM5202

	7.1	Module Marking Module Dimensions	29
	7.2	Module Dimensions	29
8	PR	ROCESS SPECIFICATION	29
9	РС	CB MOUNTING AND SOLDERING	30
	9.1	Recommended PCB Mounting Pattern	30
	Solde	DERING INFORMATION	30
10		ORDERING INFORMATION	
	10.1	L TAPE AND REEL INFORMATION	32
	10.	0.1.1 Tape dimensions	33
	10.	0.1.2 Reel Supplier A	35
		0.1.2 Reel Supplier A 0.1.3 Reel Supplier B	36
11	1	ABBREVIATIONS	37
12	I	REVISION HISTORY	39
13	I	REFERENCES	41

2 OVERVIEW

The ZM5202 module is a fully integrated module containing all the hardware and firmware required to add Z-Wave functionality to OEM products. The ZM5202 module contains the SD3502 chip along with all the required passives for supply decoupling, matching, crystal and a SAW filter as illustrated in Figure 2.1. The module only requires a stable DC supply and an antenna matched to 50Ω for operation.

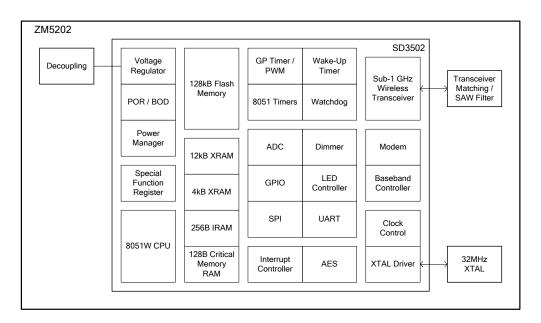


Figure 2.1: Functional block diagram

The module is verified to pass regulatory requirements and qualified to meet Z-Wave specifications. The crystal and the SAW filter are key elements that provide frequency stability of the RF output signal, and excellent RF immunity to interfering signals in the receiver path. The ZM5202 module is fully backwards compatible with the ZM4102 and ZM3102 modules in terms of the available GPIOs, hardware peripherals, and footprint. Unlike the ZM4102, it does not require a higher voltage during programming.

2.1 CPU

The CPU is binary compatible with the industry standard 803x/805x CPU and is operated at 32MHz. Its cycle performance is improved by six times relative to the standard 8051 implementation.

The CPU can be placed in 4 main modes as described in Table 2.1.

Table 2.1: CPU modes

Mode	Description
ACTIVE	 Code is executed Peripherals are available
	• All I/O's are resistively pulled high
	• Use a short (up to 4ms) reset-low pulse to enter the reset of active state
SLEEP	Wake-up timer available
	Critical memory retention available
	I/O's states according to user configuration
	Use API call to enter from ACTIVE mode
PROGRAMMING	Used to program the internal FLASH via SPI1
DURING	Code is not executed
SUSTAINED	All I/O's are resistively pulled high
RESET	 Programming requires external control of the reset pin plus the SPI port
EXTERNAL NVM	 Used to program an external NVM (FLASH/EPROM) (optionally) wired to the SPI port
PROGRAMMING	Code is not executed
	All I/O's are resistively pulled high
	• External NVM programming requires external control of the RESET pin (plus the NVM-SPI port)

2.2 PERIPHERALS

2.2.1 ADVANCED ENCRYPTION STANDARD SECURITY PROCESSOR

The Z-Wave protocol specifies the use of Advanced Encryption Standard (AES) 128-bit block encryption for secure applications. The built-in Security Processor is a hardware accelerator that encrypts and decrypts data at a rate of 1 byte per 1.5µs. It encodes the frame payload and the message authentication code to ensure privacy and authenticity of messages. The processor supports Output FeedBack (OFB), Cipher-Block Chaining (CBC), and Electronic CodeBook (ECB) modes to target variable length messages. Payload data is streamed in OFB mode, and authentication data is processed in CBC mode as required by the Z-Wave protocol. The processor implements two efficient access methods: Direct Memory Access (DMA) and streaming through Special Function Register (SFR) ports. The processor functionality is exposed via the Z-Wave API for application use.

2.2.2 ANALOG-TO-DIGITAL CONVERTER

The Analog-to-Digital Converter (ADC) is capable of sampling one of the five available input voltage sources and returns an 8 or 12-bit unsigned representation of the selected input scaled relative to the selected reference voltage, as described by the formula below.

$$ADC_{OUT} = \frac{V_{IN}}{V_{REF+} - V_{REF-}}, \qquad V_{REF-} \le V_{IN} \le V_{REF+}$$

The ADC is capable of operating rail to rail, while the following input configurations apply (V_{BG} = built-in Band-gap 1.25V, V_{DD} = supply voltage, V_{IN} = pin 10 and pin 13 to pin 15):

Table 2.2: ADC voltage source configuration options

Source	Description	Pin Pin 10, pin 13, pin 14, pin15, V _{BG}		
VIN	The sampling input voltage			
V _{REF+}	The positive node of the reference voltage	Pin 14, V _{BG} , V _{DD}		
VREF-	The negative node of the reference voltage	Pin 13, GND		

If the sampling input voltage crosses a predefined lower or upper voltage threshold, an interrupt is triggered. Setting $V_{IN} = V_{BG}$ and $V_{RFE+} = V_{DD}$ implements a battery monitor. All inputs (V_{IN} , V_{REF+} , V_{REF-}) must be driven by low impedance (R_{source}) voltage sources, to suppress offsets caused by GPIO input leakage of up to 10µA.

$$R_{source} \le \frac{V_{REF+} - V_{REF-}}{2 * |I_{INADC}| * 2^{No. of bits}}$$
, where $I_{INADC} = \pm 10 \mu A$

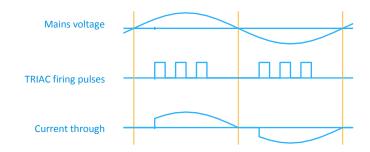
If the output impedance of the signal source is larger than R_{source}, an external buffer must be used.

2.2.3 BROWN-OUT DETECTOR / POWER-ON-RESET

When a cold start-up occurs, an internal Power-On-Reset (POR) circuit ensures that code execution does not begin unless the supply voltage is sufficient. After which, an internal Brown-Out Detector (BOD) circuit guarantees that faulty code execution does not occur by entering the reset state, if the supply voltage drops below the minimum operating level. These guarantees apply equally in both the active and sleep modes.

2.2.4 CRYSTAL DRIVER AND SYSTEM CLOCK

The system clock and RF frequencies are derived from the module mounted 32MHz crystal (XTAL), which internal system performance is factory trimmed to guarantee initial RF frequency precision. The temperature and 5 years aging margin for the internal 32MHz XTAL is 15 ppm.


2.2.5 DIMMER

The Dimmer allows you to build *leading edge* or *trailing edge* dimmers to cover dimming applications with electronic transformers, halogen or incandescent lamps, wire-wound transformers, etc. The classic leading edge method requires an external TRIAC while the more versatile and electronic transformer friendly trailing edge method requires external Field Effect Transistors (FET) or Insulated-Gate Bipolar Transistors (IGBT). The Dimmer regulates the power-on duration with a precision of 1000 steps in each 50 Hz or 60 Hz half-period. Once the Dimmer has been initialized, it will run at the requested power setting without any assistance from the MCU.

2.2.5.1 LEADING EDGE MODE

This is the classic TRIAC mode. Based on the dim-level requested, the Dimmer determines *when* and *how* the power is switched on. To ensure reliable handling in presence of inductive loads, multiple trigger pulses are automatically appended when needed.

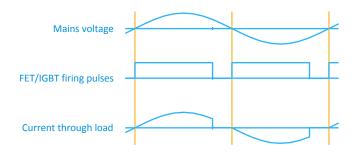


Figure 2.2: Leading edge mode (TRIAC)

2.2.5.2 TRAILING EDGE MODE

When FET/IGBT Mode is enabled, the Dimmer allows power to grow softly after each voltage zero crossing event. The Dimmer controls the turn-off time (or angle) by switching off the FET/IGBT.

2.2.5.3 ZERO CROSSING SYNCHRONIZATION

The Dimmer detects and synchronizes to the AC voltage via a zero-crossing acquisition signal provided by the dimming application. This signal must be connected to pin 14 and GPIO input level compliant. Multiple single and dual event-per-cycle formats are supported. Fixed phase delays are accepted and easily compensated for through the Z-Wave API.

2.2.6 GENERAL PURPOSE INPUT/OUTPUT

There are 10 General Purpose Input/Output (GPIO) pins. These pins can be configured individually as Schmitt triggered inputs with/without internal pull-up or open-drain/push-pull outputs. The GPIO pins can be overridden by peripheral functions and each pin is able to drive loads with a minimum of 8mA.

2.2.7 GENERAL PURPOSE TIMER / PULSE WIDTH MODULATOR

A 16-bit General Purpose (GP) auto-reload timer could be provided with either an accurate 4MHz clock or an approximate 32kHz clock. It can be configured to auto-reload a predefined value and may be polled or programmed to generate an interrupt when

the register wraps around. It also serves as a Pulse Width Modulated (PWM) signal generator on pin 4. A simple low frequency Digital-to-Analog Converter (DAC) could be designed using a few external passive components.

2.2.8 INTERRUPT CONTROLLER

Fifteen interrupt sources are supported, including external interrupt sources on the pin 3 and pin 4. The interrupts are shared between the user application and the Z-Wave protocol. Priorities for the interrupts are pre-assigned by the Z-Wave protocol implementation. Therefore, constraints for the user application apply.

Table 2.3: Interrupt vector table

Vector	Interrupt Name	Priority	Resources served
00	INTO	01	External interrupt 0 via pin 4
02	INT1	03	External interrupt 1 either via pin 3, or pin 3 and pin 4
04	UARTO	05	UART0 end of RX or TX
05	Multi	06	AES, SPI, and many more reserved resources
06	Dimmer	07	External interrupt via ZEROX pin 14. Supported by the Dimmer API
07	General Purpose Timer	08	General Purpose Timer overflow
08	ADC	09	Battery monitor, ADC low and high monitor
09	RF	10	RF DMA
14	NMI	00	Non Maskable Interrupt for debugger and more

2.2.9 LIGHT-EMITTING DIODE CONTOLLER

The Light-Emitting Diode (LED) controller provides a single channel PWM generator on pin 5, that can be used to control the current drawn through an LED.

Table 2.4: Properties of the LED controller

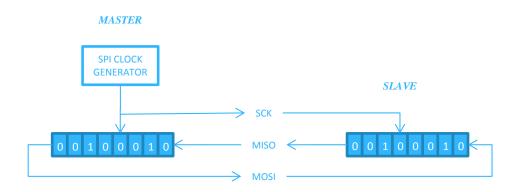
Property	Description	
Pulse width resolution	16-bit	
Frequency	488 Hz	
No. of channels	1	
Placement of the pulse within a single period	Normal mode (Pulses of all channels are synchronized to the beginning of a period)	
	Skewed mode (In each consecutive channel, pulses are shifted 25% of the period relative to the previous channel)	
Drive strength	8mA	

2.2.10 RESET CONTROLLER

After a reset event, the MCU is reinitialized in less than 1ms. This delay is mostly due to the charge time of the internal and external supply capacitances, and bringing the XTAL clock into a stable oscillation. Multiple events may cause a reset. Therefore, the actual cause is latched by hardware and may be retrieved via software when the system resumes operation. Some reset methods deliberately leave the state of GPIO pins unchanged, while other GPIO pins are set to high impedance with an internal pull-up.

Table 2.5: Supported reset methods

Reset Cause	Description	GPIO state	Maskable
BOR	Reset request generated by Brown-Out- Reset hardware	High impedance with pull-up	No
INT1	Reset request generated when a signal is received on pin INT1, when the chip is in power down mode	Unchanged	Yes
POR	Reset request generated by Power-On- Reset hardware	High impedance with pull-up	No
RESET_N	Reset request generated by the RESET_N pin being de-asserted	High impedance with pull-up	No
Software	Reset request generated in software.	Unchanged	Yes
WATCHDOG	Reset request generated by the WATCHDOG Timer timing out	High impedance with pull-up	Yes
WUT	Reset request generated by the Wake- Up-Timer timing out	Unchanged	Yes


2.2.11 SERIAL PERIPHERAL INTERFACE

SPI1 Serial Peripheral Interface enables synchronous data transfers between devices.

Table 2.6: SPI1 signal modes

	SPI1 Signal	SPI1 Function, master
MOSI		Data output
MISO		Data input
SCK		Clock output

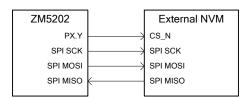

During data transmission, SCK acts as a clock, while 8 bits of data are exchanged between the two devices within 8 cycles of SCK.

Figure 2.4: Flow of data between SPI master and slave

The module acts as a SPI master when controlling an external Non-Volatile Memory (NVM). The slave select (or chip select) of the external NVM could be driven by an available GPIO. SPI1 slave mode is reserved for In-System Programming (ISP). Therefore, SPI1 can only be used as a master.

Figure 2.5: Typical interface to slave device

2.2.12 TIMERS

Timer 0 and Timer 1 are 16-bit counters that can be clocked from a fixed internal source or an external source. Except for the use of external gating signals, the complete set of classic 8051 T0/T1 features is available.

Table 2.7: Timer sources

Timer	Fixed Inter	rnal Source External Source
Timer 0	16 MHz	Pin 10
Timer 1	16 MHz	Pin 15

2.2.13 UNIVERSAL ASYNCHRONOUS RECEIVER / TRANSMITTER

The Universal Asynchronous Receiver / Transmitter (UART) is a hardware block operating independently of the 8051 CPU. It offers full-duplex data exchange, up to 230.4kbps, with an external host microcontroller requiring an industry standard NRZ asynchronous serial data format. The UARTO interface is available over pin 10 and pin15. A data byte is shifted as a start bit, 8 data bits (lsb first), and a stop bit, respectively, with no parity and hardware handshaking. Figure 2.6 shows the waveform of a single serial byte. The UART is compliant with RS-232 when an external level converter is used.

Figure 2.6: UART waveform

2.2.14 WAKE-UP TIMER

The Wake-Up Timer (WUT) plays an important role in maximizing battery life of applications like Frequently Listening Routing Slave (FLIRS) Z-Wave nodes. It is available to customer applications via the Z-Wave API, and can be configured to wake a sleeping node after 1 to 256 seconds. The programming resolution equals 8-bit fractions of 2 seconds, alternatively 8-bit fractions of 256 seconds. The WUT is automatically calibrated to the system clock when it is operational, maintaining an accuracy of <2%.

2.2.15 WATCHDOG

The watchdog helps prevents the CPU from entering a deadlock state. A timer that is enabled by default achieves this by triggering a reset event in case it overflows. The timer overflows in 1 second, therefore it is essential that the software clear the timer periodically. The watchdog is disabled when the chip is in power down mode, and automatically restarts with a cleared timer when waking up to the active mode.

2.2.16 WIRELESS TRANSCEIVER

The wireless transceiver is a sub-1 GHz ISM narrowband FSK radio, a modem, and a baseband controller. This architecture provides an all-digital direct synthesis transmitter and a low IF digital receiver. The Z-Wave protocol currently utilizes 2-key FSK/GFSK modulation schemes at 9.6/40/100 kbps data rates throughout a span of carrier frequencies from 865.2 to 926.3MHz.

The output power of the transmitter is configurable in the range -26 dBm to +4 dBm (V_{DD} = 2.3V to 3.6V, T_A = -10°C to +85°C). An external front-end could be used to further increase the link budget if necessary.

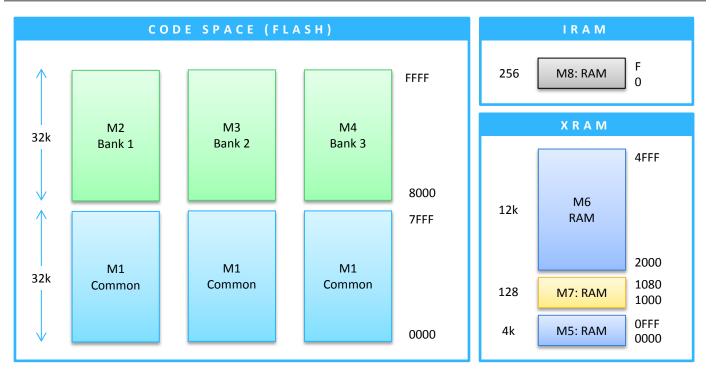

2.3 MEMORY MAP

Figure 2.7 shows an illustration of the byte wise addressable memories that are shared between the user application and the Z-Wave protocol stack. Additional ROM and NVR areas are used for boot code, calibration data, production data, and lock bytes.

Table 2.8: Description of memory blocks

ID	Memory	Address Method	Exposed during Programming	Description
M1-M4	128kB Flash	Program	Yes	Flash memory, mapped in 3 banks of 32kB
		Memory		slices over a 32kB common block, one read access per 2 clock cycles.
M5-M6	16kB RAM	XRAM	Yes	SRAM's split into 4kB and 12kB contiguous blocks
M7	256B RAM	IRAM	No	Bit addressable SRAM
M8	128B RAM	XRAM	No	Critical SRAM for data persistency during sleep mode
M9	256B NVM	(API)	No	Cached high endurance non-volatile data registers
M10	256B NVR	(API)	Yes	Flash area reserved for the Z-Wave protocol, calibration data, production data, and lock bytes

Figure 2.7: Non-API addressable memory blocks

2.4 MODULE PROGRAMMING

The code space and the NVR of the flash can be programmed and/or read through the SPI1 interface. [1]

2.4.1 ENTERING IN-SYSTEM PROGRAMMING MODE

The module can be placed into the In-System Programming (ISP) mode by asserting the active low RESET_N signal for 5.2ms. The programming unit of the module then waits for the "Interface Enable" serial command before activating the ISP mode over the SPI1.

2.5 POWER SUPPLY REGULATOR

While the supply to the digital I/O circuits is unregulated, on-chip low-dropout regulators derive all the 1.5 V and 2.5 V internal supplies required by the Micro-Controller Unit (MCU) core logic, non-volatile data registers, flash, and the analogue circuitry.

3 TYPICAL APPLICATION

An illustration of an application example using the ZM5202 module implementation follows. It is strongly recommended that the power supply is decoupled sufficiently, and a pull-up resistor placed on the RESET_N signal if the host GPIO is unable to drive it.

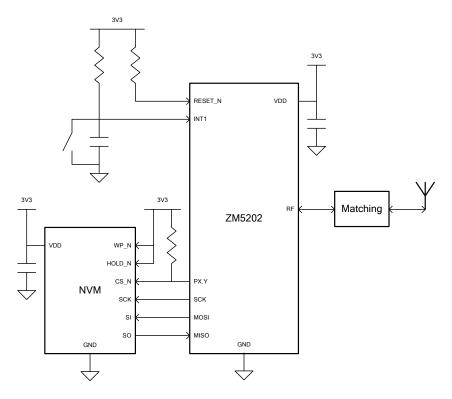
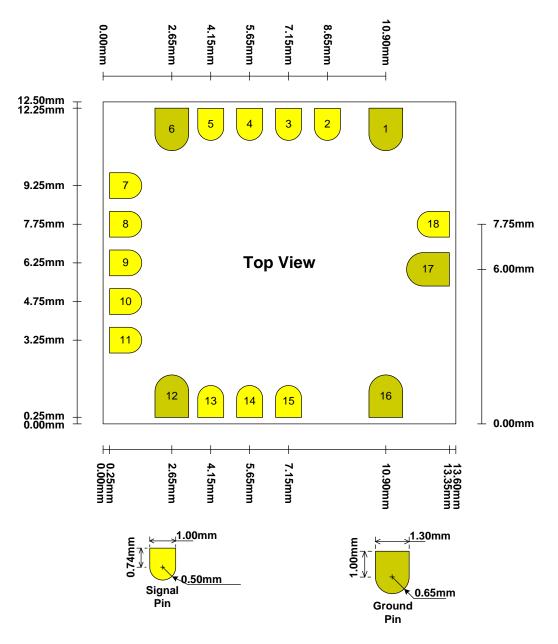



Figure 3.1: Example of a standalone application with an external antenna

4 PIN CONFIGURATION

The layout of the pins on the ZM5202 module is shown in Figure 4.1.

4.1 PIN FUNCTIONALITY

Table 4.1: Power and ground signals

Pin Name		Pin Location	Type ¹	Function
VDD	11		S	Module power supply.
GND	1, 6, 12, 16, 17		S	Ground. Must be connected to the
				ground plane.

Table 4.2: Module control signal

Pin Name		Pin Location	Туре	Function
RESET_N	2		I	Active low signal that places the module
				in a reset/programmable state.

Table 4.3: SPI1 interface signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
SPI1 SCK	8	0	SPI1 Clock input with internal pull-up.	SPI1 Clock. Output in master mode.
SPI1 MISO	7	I	Serial data transmit when in SPI1 ISP mode, high impedance otherwise with internal pull-up.	Master-In-Slave-Out serial data. Input in master mode.
SPI1 MOSI	9	0	Waits for the "Interface Enable" serial command after 5.2ms. Enters SPI1 ISP mode after command is received from the host.	Master-Out-Slave-In serial data. Output in master mode.

Table 4.4: UARTO interface signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
UARTO RX	10	I	High impedance with internal pull-up.	Receive data from host serial port.
UARTO TX	15	0	High impedance with internal pull-up.	Transmit data to host serial port.

Table 4.5: ADC interface signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
ADC0	10	I	High impedance with internal pull-up.	Analog-to-Digital converter input.
ADC1	15	I.	High impedance with internal pull-up.	Analog-to-Digital converter input.
ADC2	13	Ι	High impedance with internal pull-up.	Analog-to-Digital converter input or lower reference voltage.
ADC3	14	Ι	High impedance with internal pull-up.	Analog-to-Digital converter input or higher reference voltage.

¹ I = Input, O = Output, D+ = Differential Plus, D- = Differential Minus, S = Supply

Table 4.6: External interrupt interface signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
INT0	4	I	High impedance with internal pull-up.	External interrupt 0 input. High priority.
INT1	3, 4	I	High impedance with internal pull-up.	External interrupt 1 input. Low priority.

Table 4.7: PWM signal

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
PWM	4	0	High impedance with internal pull-up.	Pulse width modulator output.

Table 4.8: LED controller interface signal

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
PWM LED0	5	0	High impedance with internal pull-up.	LED controller output.

Table 4.9: Dimmer interface signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
TRIAC	13	0	High impedance with internal pull-up.	Dimmer output. Firing pulse to TRIAC/FET/IGBT.
ZEROX	14	I.	High impedance with internal pull-up.	Zero-cross detection input.

Table 4.10: Timer interface signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
T0 EXT CLK	10	I	High impedance with internal pull-up.	Timer 0 external clock input.
T1 EXT CLK	15	I	High impedance with internal pull-up.	Timer 1 external clock input.

Table 4.11: RF interface signal

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
RF ²	18	I/O	High impedance with internal pull-up.	RF input and output.

² Caution: pin is sensitive to electro-static discharge

Table 4.12: GPIO signals

Pin Name	Pin Location	Туре	Function in Reset State	Function in Active State
P0.4	5	I/O	High impedance with internal pull-up.	General purpose input and output.
P1.0	4	I/O	High impedance with internal pull-up.	General purpose input and output.
P1.1	3	I/O	High impedance with internal pull-up.	General purpose input and output.
P2.2	9	1/0	Waits for the "Interface Enable" serial command after 5.2ms. Enters SPI1 ISP mode after command is received from the host.	General purpose input and output.
P2.3	7	I/O	Serial data transmit when in SPI1 ISP mode, high impedance with internal pull-up otherwise.	General purpose input and output.
P2.4	8	I/O	Programmer clock input with internal pull-up.	General purpose input and output.
P3.4	10	I/O	High impedance with internal pull-up.	General purpose input and output.
P3.5	15	I/O	High impedance with internal pull-up.	General purpose input and output.
P3.6	13	I/O	High impedance with internal pull-up.	General purpose input and output.
P3.7	14	I/O	High impedance with internal pull-up.	General purpose input and output.

5 ELECTRICAL CHARACTERISTICS

This section describes the electrical parameters of the ZM5202 module.

5.1 TEST CONDITIONS

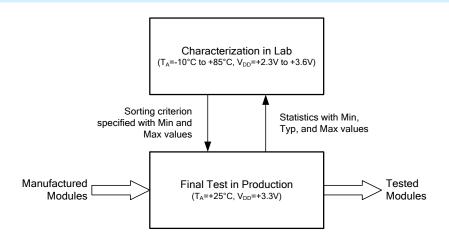


Figure 5.1: Testing flow

The following conditions apply for characterization in the lab, unless otherwise noted.

- 1. Ambient temperature $T_A = -10^{\circ}C$ to $+85^{\circ}C$
- 2. Supply voltage V_{DD} = +2.3V to +3.6V
- 3. All tests are carried out on the ZDB5202 Z-Wave Development Board. [2]
- 4. Conducted transmission power is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω
- 5. Conducted receiver sensitivity is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω

The following conditions apply for the final test in production, unless otherwise noted.

- 1. Ambient temperature $T_A = +25^{\circ}C$
- 2. Supply voltage $V_{DD} = +3.3V$
- 3. Conducted transmission power is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω
- 4. Conducted receiver sensitivity is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω

5.1.1 TYPICAL VALUES

Unless otherwise specified, typical data refer to the mean of a data set measured at an ambient temperature of $T_A=25$ °C and supply voltage of $V_{DD}=+3.3$ V.

5.1.2 MINIMUM AND MAXIMUM VALUES

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by a final test in production on 100% of the devices at an ambient temperature of $T_A=25$ °C and supply voltage of $V_{DD}=+3.3$ V.

For data based on measurements, the minimum and maximum values represent the mean value plus or minus three times the standard deviation ($\mu \pm 3\sigma$).

5.2 ABSOLUTE MAXIMUM RATINGS

The absolute ratings specify the limits beyond which the module may not be functional. Exposure to absolute maximum conditions for extended periods may cause permanent damage to the module.

Table 5.1: Voltage characteristics

Symbol	Description	Min	Max	Unit
VDD-GND	Main supply voltage	-0.3	+3.6	V
VIN-GND	Voltage applied on any I/O pin	-0.3	+3.6	V
l _{in}	Current limit when over driving the input (V _{IN-GND} > V _{DD-GND})	-	+20.0	mA
P _{RF-IN}	Radio receiver input power	-	+10.0	dBm
ESD _{HBM}	JEDEC JESD22-A114F Human Body Model	-	+2000.0	V
ESDMM	JEDEC JESD22-A115C Machine Model	-	+200.0	V
ESD CDM	JEDEC JESD22-C101E Field-Induced Charged-Device Model	-	+500.0	V

Table 5.2: Current characteristics

Symbol	Description	Min	Max	Unit
Ivdd	Current into V _{DD} power supply pin	-	+120	mA
Ignd	Sum of the current out of all GND ground pins	-120	-	mA

Table 5.3: Thermal characteristics

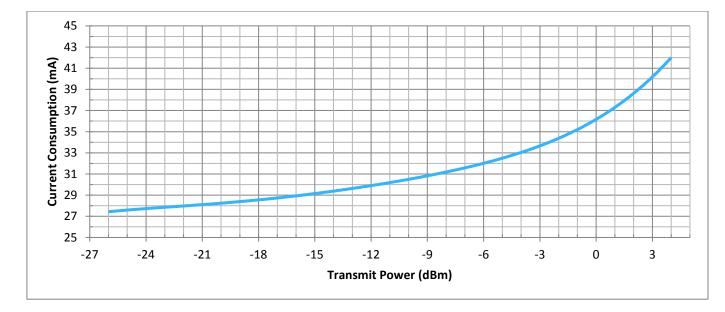
Symbol	Description	Min	Max	Unit
Ti	Junction temperature	-55	+125	°C

5.3 GENERAL OPERATING RATINGS

The operating ratings indicate the conditions where the module is guaranteed to be functional.

Table 5.4: Recommended operating conditions

Symbol	Description	Min	Тур	Max	Unit
V _{DD}	Standard operating supply voltage	+2.3	+3.3	+3.6	V
fsys	Internal clock frequency	-	32.0	-	MHz
TA	Ambient operating temperature	-10.0	+25.0	+85.0	°C


5.4 CURRENT CONSUMPTION

Measured at an ambient temperature of TA=-10°C to +85°C and a supply voltage of VDD=+2.3V to +3.6V.

Table 5.5: Current consumption in active modes

Symbol	Description	Min	Тур	Max	Unit
IDD_ACTIVE	MCU running at 32MHz	-	14.9	15.9	mA
I _{DD_RX}	MCU and radio receiver active	-	32.4	35.1	mA
IDD_TX26	MCU and radio transmitter active, -26dBm	-	27.5	-	mA
I _{DD_TX_4}	MCU and radio transmitter active, +4dBm	-	42.1	-	mA

Figure 5.2: Typical current consumption vs. transmit power

Table 5.6: Current consumption in power saving modes

Symbol	Description	Min	Тур	Max	Unit
IDD_SLEEP	Module in sleep state	-	1.0	-	μA
IDD_WUT	Module in sleep state with wake-up timer active	-	2.0	-	μA
Idd_wut_ram	Module in sleep state with wake-up timer and 128 bytes of critical RAM active	-	2.1	-	μΑ

Table 5.7: Current consumption during programming

Symbol	Des	cription	Min	Тур	Max	Unit
DD_PGM_SPI	Programming via SPI1		-	15	-	mA

5.5 SYSTEM TIMING

Measured at an ambient temperature of T_A =-10°C to +85°C and a supply voltage of V_{DD} =+2.3V to +3.6V.

Table 5.8: Transition between operating modes

Symbol	Description	Min	Тур	Max	Unit
t ACTIVE_SLEEP	Transition time from the active state to the sleep state	-	-	125	ns
t _{sleep_active}	Transition time from the sleep state to the active state ready	-	-	160	μs
	to execute code				

Table 5.9: System start-up time

Symbol	Description	Min	Тур	Max	Unit
VPOR	Power-on-Reset (POR) threshold on rising supply voltage at	-	-	+2.3	V
	which the reset signal is deasserted				
t reset_active	Transition time from the reset state to the active state ready	-	-	1.0	ms
	to execute code with a power rise time not exceeding 10µs				

Table 5.10: Wake-up timer accuracy

Symbol	Description	Min	Тур	Max	Unit
t wut_offset	Wake-up timer offset, Y-axis intercept of time vs. setting	-	-	40	ms
	curve				
t wut_scale	Wake-up timer absolute error	-	-	2	%

Table 5.11: Reset timing requirements

Symbol	Description	Min	Тур	Max	Unit
t rst_pulse	Duration to assert RESET_N to guarantee a full system reset	20	-	-	ns

Table 5.12: Programming time

Symbol	Description	Min	Тур	Max	Unit
terase_full	Time taken to erase the entire flash memory	-	-	44.1	ms
tpgm_full	Time taken to program the entire flash memory over SPI1 at 4MHz including a full erase	-	-	1.4	S

5.6 NON-VOLATILE MEMORY

Qualified for an ambient temperature of T_A =+25°C and a supply voltage of V_{DD} =+3.3V. The on-chip memory is based on SuperFlash® technology.

Table 5.13: On-chip flash

Symbol	Description	Min	Тур	Max	Unit
ENDFLASH	Endurance, erase cycles before failure	10000	-	-	cycles
RET _{FLASH-LT}	Data retention	100	-	-	years
RET FLASH-HT	Data retention (Qualified for a junction temperature of	10	-	-	years
	T _J =-10°C to +85°C)				

Table 5.14: On-chip M9 high endurance NVM

Symbol	Description	Min	Тур	Max	Unit
END _{NVM}	Endurance, erase cycles before failure	100000	-	-	cycles
RET_{NVM-LT}	Data retention	100	-	-	years
RET NVM-HT	Data retention (Qualified for a junction temperature of	10	-	-	years
	T ₁ =-10°C to +85°C)				

5.7 ANALOG-TO-DIGITAL CONVERTER

Measured at an ambient temperature of T_A =-10°C to +85°C and a supply voltage of V_{DD} =+2.3V to +3.6V.

Table 5.15: 12 bit ADC characteristics

Symbol	Description	Min	Max	Unit
V _{BG}	Internal reference voltage	+1.20	+1.30	V
VREF+	Upper reference input voltage	V _{DD} - 0.90	V _{DD}	V
VREF-	Lower reference input voltage	0.00	+1.20	V
IADCIN	Input current ($0 \le V_{IN} \le V_{DD}$)	-10.00	+10.00	μΑ
	Differential non-linearity	-1.00	+1.00	LSB
ACC _{8b}	Accuracy when sampling 20ksps with 8 bit resolution	-2.00	+2.00	LSB
ACC12b	Accuracy when sampling 10ksps with 12 bit resolution	-5.00	+5.00	LSB
fs-8b	8 bit sampling rate	-	0.02	Msps
f _{S-12b}	12 bit sampling rate	-	0.01	Msps

5.8 GENERAL PURPOSE INPUT OUTPUT

Measured at an ambient temperature of $T_A \mbox{=-} 10^\circ C$ to $+85^\circ C.$

Table 5.16: Digital input characteristics, supply voltage of V_{DD} =+2.3V to +3.0V

Symbol	Description	Min	Max	Unit
VIH	Logical 1 input voltage high level	+1.85	-	V
VIL	Logical 0 input voltage low level	-	+0.75	V
VIF	Falling input trigger threshold	+0.75	+1.05	V
Vir	Rising edge trigger threshold	+1.35	+1.85	V
VHYS	Schmitt trigger voltage hysteresis	+0.55	+0.85	V
I _{IH}	Logical 1 input high level current leakage	-	+7.00	μΑ
IIL-NPU	Logical 0 input low level current leakage (no internal pull-up resistor)	-7.00	-	μΑ
I _{IL-PU}	Logical 0 input low level current leakage (with internal pull-up resistor)	+35.00	+90.00	μΑ
PUIN	Internal pull-up resistance (T _A =+25°C)	20.00	30.00	kΩ
CIN	Pin input capacitance	-	15.00	рF

Table 5.17: Digital output characteristics, supply voltage of V_{DD} =+2.3V to +3.0V

Symbol	Description	Min	Max	Unit
Vон	Logical 1 output voltage high level	+1.9	-	V
Vol	Logical 0 output voltage low level	-	+0.4	V
I _{OH-LP}	Logical 1 output high level current sourcing	-	+6.0	mA
IOL-LP	Logical 0 output low level current sinking	-6.0	-	mA
I _{ОН-НР}	Logical 1 output high level current sourcing (pin 10 and pin 13 to pin 15)	-	+12.0	mA
IOL-HP	Logical 0 output low level current sinking (pin 10 and pin 13 to pin 15)	-12.0	-	mA

Table 5.18: Digital input characteristics, supply voltage of V_{DD}=+3.0V to +3.6V

Symbol	Description	Min	Max	Unit
VIH	Logical 1 input voltage high level	+2.10	-	V
VIL	Logical 0 input voltage low level	-	+0.90	V
VIF	Falling input trigger threshold	+0.90	+1.30	V
V _{IR}	Rising edge trigger threshold	+1.60	+2.10	V
V _{HYS}	Schmitt trigger voltage hysteresis	+0.65	+0.95	V
l _{IH}	Logical 1 input high level current leakage	-	+10.00	μΑ
IIL-NPU	Logical 0 input low level current leakage (no internal pull-up resistor)	-10.00	-	μΑ
IIL-PU	Logical 0 input low level current leakage (with internal pull-up resistor)	+40.00	+120.00	μA
PUIN	Internal pull-up resistance (T_A =+25°C)	15.00	20.00	kΩ
CIN	Pin input capacitance	-	15.00	рF

Table 5.19: Digital output characteristics, supply voltage of V_{DD}=+3.0V to +3.6V

Symbol	Description	Min	Max	Unit
Vон	Logical 1 output voltage high level	+2.4	-	V
Vol	Logical 0 output voltage low level	-	+0.4	V
Іон-ір	Logical 1 output high level current sourcing	-	+8.0	mA
IOL-LP	Logical 0 output low level current sinking	-8.0	-	mA
Іон-нр	Logical 1 output high level current sourcing (pin 10 and pin 13 to pin 15)	-	+16.0	mA
IOL-HP	Logical 0 output low level current sinking (pin 10 and pin 13 to pin 15)	-16.0	-	mA

5.9 RF CHARACTERISTICS

5.9.1 TRANSMITTER

Measured at an ambient temperature of T_A =-10°C to +85°C and a supply voltage of V_{DD} =+2.3V to +3.6V. The transmission power is adjusted by setting the value of the RFPOW register.

Table 5.20: Transmitter performance

Symbol	Description	Min	Тур	Max	Unit
P ₆₃	RF output power delivered to the antenna, RFPOW=63	+2.9	+4.0	-	dBm
P ₀₁	RF output power delivered to the antenna, RFPOW=01	-29.0	-26.1	-	dBm
Рн2-63	2 nd harmonic, RFPOW=63	-	-57.3	-	dBc
P _{H2-48}	2 nd harmonic, RFPOW=48	-	-60.2	-	dBc
Рн2-32	2 nd harmonic, RFPOW=32	-	-61.9	-	dBc
Рн2-20	2 nd harmonic, RFPOW=20	-	-59.6	-	dBc
Рн2-8	2 nd harmonic, RFPOW=8	-	-51.3	-	dBc
Рнз-63	3 rd harmonic, RFPOW=63	-	-45.4	-	dBc
Р _{нз-48}	3 rd harmonic, RFPOW=48	-	-45.8	-	dBc
Рнз-32	3 rd harmonic, RFPOW=32	-	-45.6	-	dBc
Р _{НЗ-20}	3 rd harmonic, RFPOW=20	-	-47.6	-	dBc
Р _{нз-8}	3 rd harmonic, RFPOW=8	-	-46.6	-	dBc
PN _{30kHz}	Phase noise at 30kHz	-	-88.1	-	dBc/Hz
PN _{100kHz}	Phase noise at 100kHz	-	-95.2	-	dBc/Hz
PN1MHz	Phase noise at 1MHz	-	-107.3	-	dBc/Hz
PN10MHz	Phase noise at 10MHz	-	-113.1	-	dBc/Hz
РN 20MHz	Phase noise at 100MHz	-	-113.8	-	dBc/Hz
BW9.6	Channel bandwidth, 9.6kbps	-	90.0	-	kHz
BW40	Channel bandwidth, 40kbps	-	90.0	-	kHz
BW100	Channel bandwidth, 100kbps	-	110.0	-	kHz

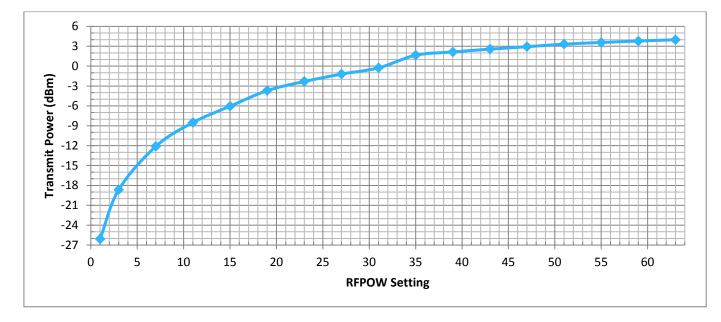


Figure 5.3: Typical transmit power vs. RFPOW setting

The transmitter is calibrated from factory. Refer to [3] for more information.

5.9.2 RECEIVER

Measured over an ambient temperature of T_A =+25°C and a supply voltage of V_{DD} =+2.3V to +3.6V.

Table 5.21: Receiver sensitivity

Symbol	Description	Min	Тур	Max	Unit
P9.6	Sensitivity at 9.6kbps, FER < 1%	-	-102.7	-101.0	dBm
P40	Sensitivity at 40kbps, FER < 1%	-	-99.0	-97.2	dBm
P ₁₀₀	Sensitivity at 100kbps, FER < 1%	-	-93.0	-91.8	dBm

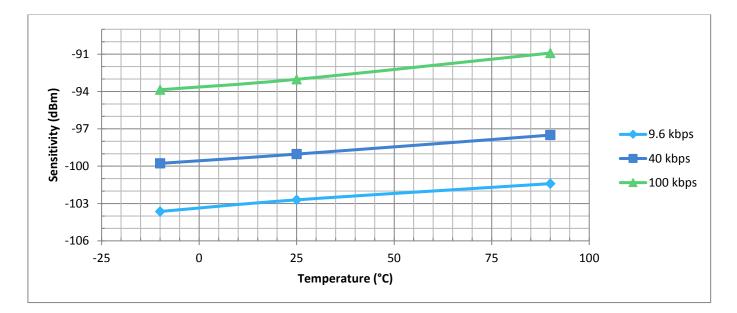


Figure 5.4: Typical sensitivity vs. temperature

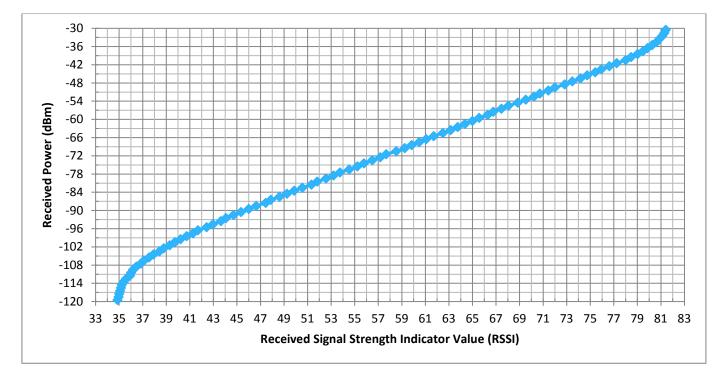


Table 5.22: Receiver performance

Symbol	Description	Min	Тур	Max	Unit
CCR _{9.6}	Co-channel rejection, 9.6kbps	-	-3.9	-	dBc
BI _{1MHZ-9.6}	Blocking immunity ³ at ∆f=1MHz, 9.6kbps	-	43.5	-	dBc
ВІ 2мнz-9.6	Blocking immunity at Δf=2MHz, 9.6kbps	-	52.6	-	dBc
BI _{5MHZ-9.6}	Blocking immunity at Δf =5MHz, 9.6kbps	-	70.6	-	dBc
ВІ 10мнz-9.6	Blocking immunity at Δf =10MHz, 9.6kbps	-	73.9	-	dBc
ВІ 100МНZ-9.6	Blocking immunity at Δf =100MHz, 9.6kbps	-	85.7	-	dBc
CCR ₄₀	Co-channel rejection, 40kbps	-	-9.1	-	dBc
ВІ 1МНZ-40	Blocking immunity at $\Delta f=1MHz$, 40kbps	-	40.2	-	dBc
BI _{2MHZ-40}	Blocking immunity at Δf =2MHz, 40kbps	-	48.0	-	dBc
BI5MHZ-40	Blocking immunity at Δf =5MHz, 40kbps	-	65.2	-	dBc
BI _{10MHZ-40}	Blocking immunity at Δ f=10MHz, 40kbps	-	67.7	-	dBc
BI100MHZ-40	Blocking immunity at Δf =100MHz, 40kbps	-	82.0	-	dBc
CCR100	Co-channel rejection, 100kbps	-	-8.1	-	dBc
ВІ 1МНZ-100	Blocking immunity at Δf =1MHz, 100kbps	-	30.2	-	dBc
ВІ 2МНZ-100	Blocking immunity at Δf =2MHz, 100kbps	-	35.2	-	dBc
ВІ 5МНZ-100	Blocking immunity at Δf =5MHz, 100kbps	-	59.0	-	dBc
BI10MHZ-100	Blocking immunity at Δ f=10MHz, 100kbps	-	62.6	-	dBc
BI100MHZ-100	Blocking immunity at Δf =100MHz, 100kbps	-	76.0	-	dBc
RSSIRANGE	Dynamic range of the RSSI measurement	-	70.0	-	dB
RSSILSB	Resolution of the RSSI measurement	-	1.5	-	dB
Ριο	LO leakage at Δf =200kHz and Δf =325kHz	-	-84.4	-80.0	dBm
IIP3	Input 3 rd order intercept point	-	-12.0	-	dBm
BW9.6	Intermediate frequency filter bandwidth, 9.6kbps	-	300.0	-	kHz
BW40	Intermediate frequency filter bandwidth, 40kbps	-	300.0	-	kHz
BW100	Intermediate frequency filter bandwidth, 100kbps	-	600.0	-	kHz

³ Blocker level is defined relative to the wanted receiving signal and measured with the wanted receiving signal 3dB above the sensitivity level

Figure 5.5: Typical input power vs. RSSI value

First-order approximation:

Received Power $[dBm] \approx 1.56 \times RSSI - 161.45$, where $RSSI \in [40,80]$

5.9.3 REGULATORY COMPLIANCE

The ZM5202 has been tested on the ZDP03A Z-Wave Development Platform to be compliant with the following regulatory standards. [4]

- ACMA COMPLIANCE
 - o AS/NZS 4268
 - o CISPR 22
- CE COMPLIANCE
 - o EN 300 220-1/2
 - o EN 301 489-1/3
 - o EN 55022
 - o EN 60950-1
 - EN 61000-4-2/3
 - EN 62479
 - FCC COMPLIANCE
 - o FCC CFR 47 Part 15 Subpart C §15.249
 - IC COMPLIANCE
 - o RSS-GEN
 - o RSS-210
 - o ANSI C63.10
- MIC COMPLIANCE
 - ARIB STD-T108

6 Z-WAVE FREQUENCIES

Table 6.1: Z-Wave RF specification

Data rate	9.6kbps	40kbps	100kbps	
Modulation	Frequency Shift Keying (FSK)	FSK	Gaussian Frequency Shift Keying (GFSK)	
Frequency deviation Frequency accuracy	fc±20kHz fc±13ppm	fc±20kHz fc±13ppm	fc±29.3kHz fc±13ppm	
Coding	Manchester encoded	Non-return to Zero (NRZ)	NRZ	
United Arab Emirates	868.42 MHz	868.40 MHz	869.85 MHz	Е
Australia	921.42 MHz	921.40 MHz	919.80 MHz	н
Brazil	921.42 MHz	921.40 MHz	919.80 MHz	Н
Canada	908.42 MHz	908.40 MHz	916.00 MHz	U
Chile	908.42 MHz	908.40 MHz	916.00 MHz	U
China	868.42 MHz	868.40 MHz	869.85 MHz	Е
European Union	868.42 MHz	868.40 MHz	869.85 MHz	Е
Hong Kong	919.82 MHz	919.80 MHz	919.80 MHz	Н
Israel	916.02 MHz	916.00 MHz	-	U
India	865.20 MHz	865.20 MHz	865.20 MHz	Е
Japan	-	-	922.50 MHz	Н
	-	-	923.90 MHz	Н
	-	-	926.30 MHz	Н
Korea	-	-	920.90 MHz	н
	-	-	921.70 MHz	Н
	-	-	923.10 MHz	н
Mexico	908.42 MHz	908.40 MHz	916.00 MHz	U
Malaysia	868.12 MHz	868.10 MHz	868.10 MHz	Е
New Zealand	921.42 MHz	921.40 MHz	919.80 MHz	Н
Russia	869.02 MHz	869.00 MHz	-	Е
Singapore	868.42 MHz	868.40 MHz	869.85 MHz	Е
Taiwan	-	-	922.50 MHz	Н
	-	-	923.90 MHz	Н
	-	-	926.30 MHz	Н
United States	908.42 MHz	908.40 MHz	916.00 MHz	U
South Africa	868.42 MHz	868.40 MHz	869.85 MHz	Е

7 MODULE INFORMATION

7.1 MODULE MARKING

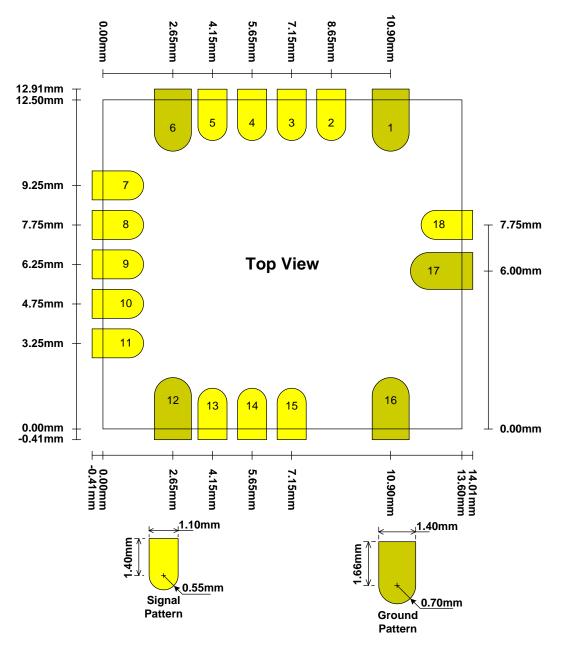
Figure 7.1: Marking placement

Table 7.1: Marking description		
Regional information	REGION:	
	E	
	U	
	Н	

7.2 MODULE DIMENSIONS

Table 7.2: Dimensions

Length	13.6mm +/- 0.3 mm	
Width	12.5mm +/- 0.3 mm	
Height	1.9mm +/- 0.3 mm	


8 **PROCESS SPECIFICATION**

Specification	Description
MSL 3	Moisture Sensitivity Level designed and manufactured according to JEDEC J-STD-020C
REACH	REACH is a European Community Regulation on chemicals and their safe use (EC 1907/2006). It deals with the Registration, Evaluation, Authorisation and Restriction of Chemical substances
RoHS	Designed in compliance with The Restriction of Hazardous Substances Directive (RoHS)

9 PCB MOUNTING AND SOLDERING

9.1 RECOMMENDED PCB MOUNTING PATTERN

SOLDERING INFORMATION

The soldering details to properly solder the ZM5202 module on standard PCBs are described below. The information provided is intended only as a guideline and Silicon Labs is not liable if a selected profile does not work.

See IPC/JEDEC J-STD-020D.1 for more information.

Table 9.1: Soldering details

PCB solder mask expansion from landing pad edge	0.1 mm
PCB paste mask expansion from landing pad edge	0.0 mm
PCB process	Pb-free (Lead free for RoHS ⁴ compliance)
PCB finish	Defined by the manufacturing facility (EMS) or customer
Stencil aperture	Defined by the manufacturing facility (EMS) or customer
Stencil thickness	Defined by the manufacturing facility (EMS) or customer
Solder paste used	Defined by the manufacturing facility (EMS) or customer
Flux cleaning process	Defined by the manufacturing facility (EMS) or customer

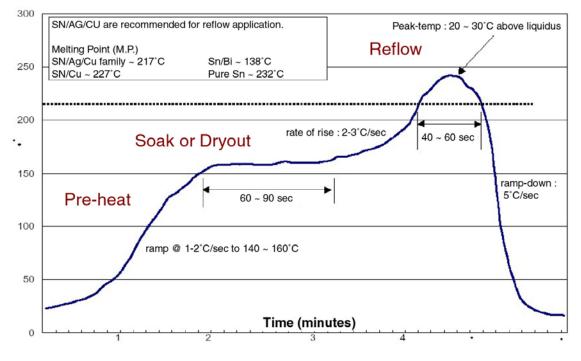


Figure 9.2: Typical reflow profile

⁴ RoHS = Restriction of Hazardous Substances Directive, EU

10 ORDERING INFORMATION

Table 10.1: Ordering codes

Orderable Device	Status	Package Type	Pins	Minimum Order Quantity	Description
ZM5202AE-CME3R	ACTIVE	SOM	18	1000 pcs.	ZM5202 module, RevA, 868MHz Band, Tape and Reel
ZM5202AU-CME3R	ACTIVE	SOM	18	1000 pcs.	ZM5202 module, RevA, 908MHz Band, Tape and Reel
ZM5202AH-CME3R	ACTIVE	SOM	18	1000 pcs.	ZM5202 module, RevA, 921MHz Band, Tape and Reel

10.1 TAPE AND REEL INFORMATION

Shipment will be provided in tape with dimensions according to specifications in the following sections. Reel can be from two alternative sources A or B with following dimensions and design. Main difference between alternatives is design and visual look. Dimensions has been kept as equal as possible.

10.1.1 TAPE DIMENSIONS

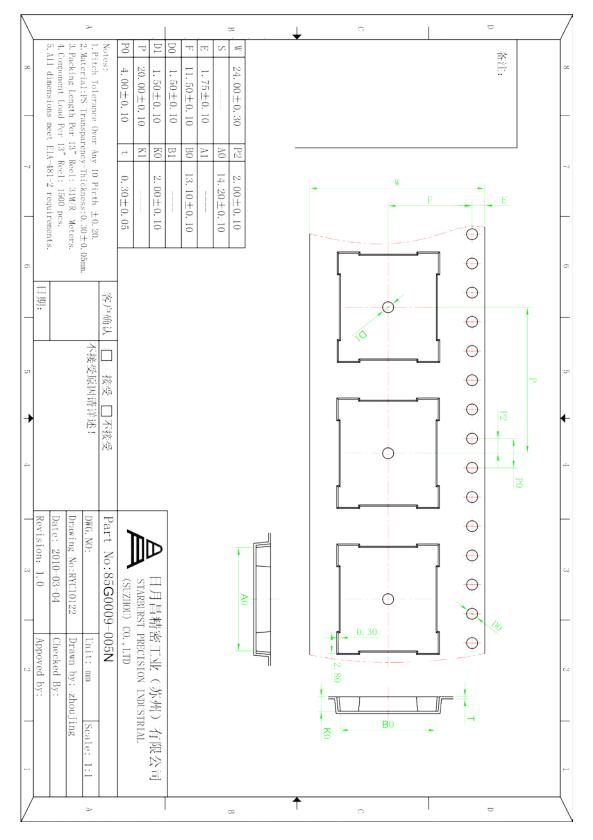
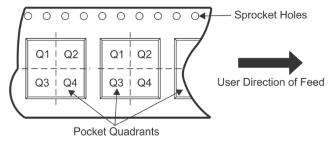



Figure 10.1: Tape information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Parameter	Value
Pin 1 Quadrant	Pocket Quadrant Q3

10.1.2 REEL SUPPLIER A

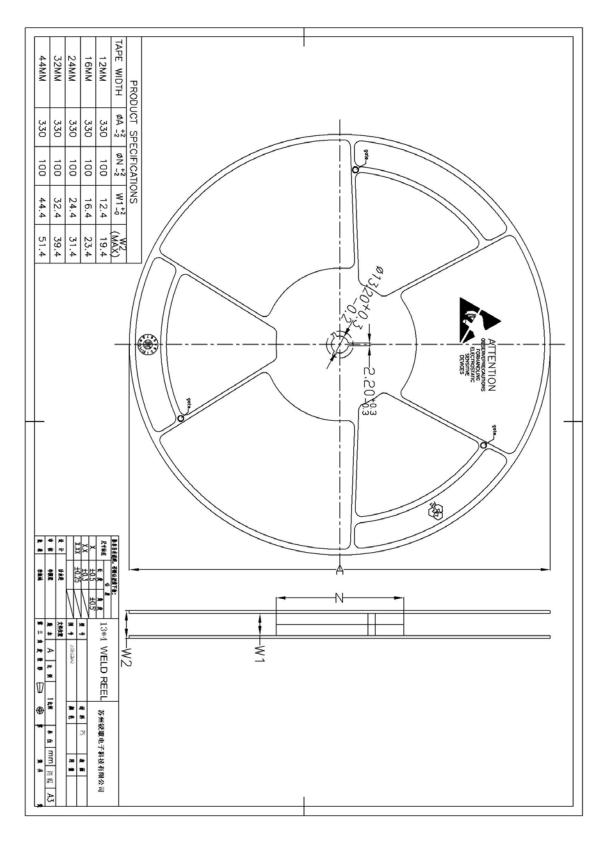


Figure 10.2: Reel information

10.1.3 REEL SUPPLIER B

_		-		
Combine reel	EBC416-210	EBC408-210	Part Number	"A" ATEDVION Electrostofic Sensitive Devices Sofe Handling Required
BLUE	BLUE	BLUE	Color	
24 mm	16 mm	8 mm	Nominal	Recycle Log
330 mm	330 mm	330 mm	øA (+/-2 mm)	
102 mm	102 mm	102 mm	ØN (+/-2 mm)	
25 (+0.70 mm , - 0.30 mm)	16.5 (+0.70 mm , -0.30 mm)	8.5 (+0.70 mm , -0.30 mm)	W1	PAT. NO. PAT. PAT. PAT. PAT. PAT. PAT. PAT. PAT.
30.4 mm	19.2 mm	11.2 mm	W2 MAX	væl k → væl (inn beg ø89 Ref biz ø102.0±2.0 ↓ gif

		APP.	I	ND.
		CHK.	4" RE	DES
2010-03 冠家	4	DS.	REEL(33)	DESCRIPTION
03-04 <u>k</u>	2	DR.	30mm)	
÷		THIRD ANGLESCALE	PS	MATERIAL
4 1/3		GLESCALE		L Q'TY
.XX =±0.13 X*0'=±1*	.X =±0.25	TOLERANCE		REMARK
13	іу С			~
DVG ND.		TITLE		1
EBC	EBO		HW_{\perp}	
EBC4005	EBC4005		HWA SHU	
UI	U		HU	
10. CODE 00	_>	REV.		

11 ABBREVIATIONS

2FSK 2-key Frequency Shift Keying 2GFSK 2-key Gaussian Frequency Shift Keying ACM Abstract Control Model ACMA Australian Communications and Media Authority ADC Analog to-Digital Converter AES Advanced Encryption Standard API Application Programming Interface APM Auto Programming Mode AV Auto Programming Mode AV Auto Programming Mode AV Auto Programming Mode AV Auto Programming Interface BOD Brown-Out Detector CBC Conformité Européenne COM Communications Device Class CIE Conformité Européenne COM Communications Device Class CIE Conformité Européenne COM Communications Contexter D Differential Minus D+ Differential Minus D+ Differential Plus DAC Digital-to-Analog Converter DC Direct Memory Access EBC Electronic CodeBook EMS Electronic Manufacturing Services ESD Electronic Manufacturing Services FFT Field Effect Transistor FISK Frequenty Shift Keying <	Abbreviation	Description
2GFSK2-key Gaussian Frequency Shift KeyingACMAustralian Communications and Media AuthorityACMAAustralian Communications and Media AuthorityADCAnalog to-Digital ConverterADSAdvanced Encryption StandardAPIApplication Programming InterfaceAPIApplication Programming InterfaceAPMAuto Programming ModeAVAudio VideoBODBrown-Out DetectorCBCCommunications Device ClassCBCCommunications Device ClassCBCCommunications Device ClassCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferential MinusD-Differential Processing UnitDACDifferential Processing UnitCRCFetertonic Manufacturing ServicesEDSElectronic CodeBookETSFetertonic Manufacturing ServicesESDElectronic Schwing SurgerFFTField Effect TranistorFFTField Effect TranistorFFTField Effect TranistorFFTField Effect TranistorFFTField Effect TranistorFFTField Effect Tranistor <td></td> <td></td>		
ACMAbstract Control ModelACMAAustralian Communications and Media AuthorityACCAnalog-to-Digital ConverterAESAdvanced Encryption StandardAFIApplication Programming InterfaceAPMAuto Programming ModeAVAuto Nudo VideoBODBrown-Out DetectorCBCCipher-Block ChainingCDCCommunications Device ClassCBCConformité EuropéenneCDMCommunicationCPUCentral Processing UnitCRCCycle Redundancy CheckDDifferentialD-Differential MinusD+Differential MinusDACDigital-to-Analog ConverterDCDirect CurrentDMADirect CurrentDMADirect CurrentCRGFederal Communications for NeisonEKSElectronic CodeBookEKSElectronic Manifacturing ServicesESDElectronic Manifacturing ServicesESDElectronic Manifacturing ServicesESDFrequency Shift KeyingGPIGeneral PurposeGPIGeneral PurposeGPIGeneral PurposeGPIInterron RateFSKGausian Frequency Shift KeyingGPIInterron RateFSKInterron RateGPIInterronicing and Packaging CircuitsIRInterronicing and Packaging CircuitsIRInterronicing and Packaging CircuitsIRInterronicing and Packaging CircuitsIRInf		
ACMAAustralian Communications and Media AuthorityADCAnalog-to-Digital ConverterADSAdvanced Encryption StandardAPIApplication Programming InterfaceAPIApplication Programming InterfaceAPIAuto Programming ModeAVAudio VideoBODBrown-Out DetectorCBCCommunications Device ClassCBCConformité EuropéenneCDMConformité EuropéenneCDMConformité EuropéenneCDMOffferentialDDifferential MinusDDifferential MinusD+Differential MinusDACDifferential MinusDACDifferential PlusDACDifferential PlusDAC <td></td> <td></td>		
ADCAnalog to Digital ConverterAESAdvanced Encryption StandardAPIApplication Programming InterfaceAPMAuto Programming ModeBODBrown-Out DetectorBODBrown-Out DetectorCBCCommunications Device ClassCBCCommunications Device ClassCBCCommunication Device ClassCBCCommunication Processing UnitCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferential MinusD+Differential PlusD+Differential PlusDACDigital-Chalog ConverterDACDirect CurrentDMADirect CurrentDMADirect CurrentDMAElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesESDElectronic CodeBookFFTFrequenty Ustening Routing SlaveFFXFrequency Shift KeyingGPGeneral PurposeGPIInterronkery Shift KeyingGPGeneral Purpose Input OutputICIntergraded CrustIRGIntergraded CrustIRGIntergraded CrustIRGInterconnettig and Packaging CircuitsIRGInterronket Blopal TransistorIRGIntergrade InpusINTIntergrade InpusINTInterconteg and Packaging CircuitsIRGInterconteg and Packaging CircuitsIRGInterrational Packaging CircuitsIRGInterconteg and Packaging Circuits </td <td></td> <td></td>		
AESAdvanced Encryption StandardAPIApplication Programming InterfaceAPMAuto Programming ModeAVAuto Programming ModeAVAudio VideoBDDBrown-Out DetectorCBCCipher-Block ChainingCDCCommunication Device ClassCEConformité EuropéenneCDMCentral Processing UnitCRCCyclic Redundancy CheckDDifferentialDDifferential MinusD-Differential MinusDACDifferential PlusDACDifferential PlusDAGDifferential PlusDAGDifferential PlusDAG		·
APIApplication Programming InterfaceAPMAudio Programming ModeAPMAudio VideoBODBrown-Out DetectorBODBrown-Out DetectorCBCCommunications Device ClassCDCCommunication Device ClassCEConfornité EuropéenneCDMCommunicationCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferentialD-Differential PlusDACDigital-to-Analog ConverterDACDirect CurrentDMADirect CurrentDMADirect CurrentESDElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesFFTField Effect TransistorFLRSFrequenty Shift KeyingGPGeneral PurposeGPGeneral PurposeGPGeneral Purpose Input OutputIInterrediate FrequencyI/OInput / OutputI/OInput / OutputI/OInterrediate FrequencyI/NTInterrediate GroundIRAMInducrediase Biolog TransistorI/RAMInducrediase Biolog CircuitsIRAInterrediate FrequencyI/OInput / OutputI/OInterrediate FrequencyI/NTInterrediate FrequencyI/NTInterrediate FrequencyI/RAMInducrediasebile Random Access MemoryI/RAMInducrediasebile Random Access Memory <t< td=""><td></td><td></td></t<>		
APMAuto Programming ModeAVAutio VideoBDDBrown-Out DetectorCBCCipher-Block ChainingCDCCommunication Device ClassCEConfornité EuropéenneCOMCommunicationCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferential MinusD+Differential PlusDACDijferential PlusDACDijferential PlusDACDirect Memory AccessEGBElectronic CodeBookEMSElectronic CodeBookESDElectronic CodeBookESSElectronic CodeBookFERField Effect TransistorFERField Effect TransistorFERField Effect TransistorFERField Effect TransistorFIRSFrequency Shift KeyingGPIOGeneral Purpose Input / OutputIInput / OutputIInput / OutputIFInstrade CrucitIFIntermediate FrequencyIFIntermediate Frequency <td></td> <td></td>		
AVAudio VideoBODBrown-Out DetectorBOECipher-Block ChainingCDCCommunications Device ClassCECommunications Device ClassCECommunications Device ClassCPUCentral Processing UnitCRCCyclic Redundary CheckDDifferentialD-Differential MinusD+Differential PlusDACDifferential PlusDACDifferential PlusDACDifferential PlusDACDifferential PlusEGBElectronic CodeBookEKSElectronic CodeBookEKSElectronic CodeBookEKSFrequenty Ustening ServicesESDElectronic CodeBookFFTField Effect TransistorFILISFrequenty Ustening Routing SlaveFSKFrequenty Shift KeyingGFSKGeneral Purpose Input OutputI/OInput / OutputI/OInput / OutputI/OIntermediate FrequencyI/FIntermediate FrequencyI/GTInstrede GircuitIRMIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISMLeast Significant BitLEDUnitertal ITelecommunications UnionIEDECJoint Electron Device Engineering CouncilISMIndirecting ITelecommunications UnionISMIndirecting ITelecommunications UnionISMIndirecting ITelecommu		
BODBrown-Out DetectorCBCCipher-Block ChainingCDCCommunications Device ClassCEConformité EuropéenneCOMCommunicationCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferentialD-Differential NinusD+Differential PlusDACDifferential PlusDACDifferential CurrentDMADirect Memory AccessECBElectronic CodeBookETSElectronic CodeBookESDElectronic CodeBookFFTFrailed Effort TransistorFLISSFrequently Listening Routing SlaveFSKGeneral PurposeGPIOGeneral PurposeGPIOGeneral PurposeGPIOGeneral PurposeICIntermediate FrequencyIVIntermediate FrequencyIVInterreding and Packaging CircuitsIVInt		
CBCCipher-Block ChainingCDCCommunications Device ClassCEConformité EuropéenneCOMCommunicationCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferential MinusD+Differential MinusD+Differential MinusDACDigital-to-Analog ConverterDCDirect CurrentCBADirect OctedeookECBElectronic CodeookEKSElectronic CodeookESDElectronic CodeookESDElectronic CodeookEKRFraquenty Listening Nouring ServicesESDElectronic SommissionFERField Effect TransistorFEIRSFrequency Shift KeyingGPOGeneral PurposeGPOGeneral PurposeGPOGeneral Purpose Input OutputIInputI/OInput JoutputI/CInsulated-Gate Bipolar TransistorIRMInferredia ErequencyIRMInferredia ErequencyIRMInferredia ErequencyIRMIndirecting addressable Random Access MemoryISMIndirecting Addressable Random Access MemoryISMIndirecting Addressable Random Access MemoryISMLeast Significant ByteISDLeast Significant ByteISDLeast Significant ByteISDLeast Significant ByteISDLeast Significant ByteISDLeast Significant ByteISDLeast Significant Byte <t< td=""><td></td><td></td></t<>		
CDCCommunications Device ClassCEConformité EuropéenneCOMCommunicationCPUCentral Processing UnitCRCCyclic Redundancy CheckDDifferentialD-Differential MinusD+Differential PlusDACDigital-to-Analog ConverterDCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookESDElectronic CodeBookESDElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesFTField Effect TransistorFLRSFrequency Shift KeyingGPGeneral PurposeGPLGeneral PurposeGPLGeneral PurposeGPLInsulated-Gate Bipolar TransistorIInsulated-Gate Bipolar TransistorINIntergrated CircuitIFIntergrated CircuitsIRInfaredIRAMIndirecting adPackaging CircuitsIRIndirecting adPackaging CircuitsIRInfaredIRAMIndirecting adPackaging CircuitsIRAMIndirecting adPackaging CircuitsIRAMIndirecting adressable Random Access MemoryISMIndirecting adressable Random Access Memory<		
CEConformité EuropéenneCOMCommunicationCPUCentral Procesing UnitCRCCyclic Redundancy CheckDDifferentialD-Differential MinusD+Differential MinusDACDigital-to-Analog ConverterDCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookEKSElectronic CodeBookFFCFedral Communications CommissionFFRField Effect TransistorFLIRSFrequency Shift KeyingGPIOGeneral PurposeGPIOGeneral PurposeGPIOGeneral Purpose Input OutputIIngut-directing and Packaging CircuitsIFInstated Effect TransistorISMInstated Effect GircuitIInput-UutputICIngutade Effect GircuitIInput-UutputICIntergrated CircuitIFInstated Effect GircuitsIFInstated Effect GircuitsIFInstated GircuitIFInterruptIPCInterruptIPCInterruptIPCIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access Memory <t< td=""><td></td><td></td></t<>		
COMCommunicationCPUCentral Processing UnitCPUCyclic Redundancy CheckDDifferentialD-Differential PlusD-Differential PlusDACDijferential PlusDACDijetal-to-Analog ConverterDCDirect CurrentDMADirect CurrentEGBElectronic CodeBookEKSElectronic CodeBookEKSElectronic CodeBookFERElectronic Sounduritorig ServicesESDElectronic Sounduritorig ServicesFSKFederal Communications CommissionFERField Effect TransistorFLIRSFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPOGeneral PurposeGPIOGeneral PurposeGPIOGeneral PurposeInputIntegrated CircuitIInput / OutputI/OIntegrated CircuitIFIntegrated CircuitIFInterruptIPCInterruptIPCInterrupt and Packaging CircuitsIRInduricity addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPJoint Electron Device Engineering CouncilIFDECJoint Electron Device Engineering CouncilISDLeast Significant BitLSDLeast Significant BitLSDLeast Significant BitLSDLeast Significant BitLSDMicro-Controller Unit		
CRCCyclic Redundancy CheckDDifferential MinusD+Differential MinusD+Differential PlusDACDijfat-to-Analog ConverterDCDirect CurrentDMADirect CodeBookEGBElectronic CodeBookESDElectronic CodeBookESDElectronic CodeBookFRFrame Error RateFCCFederal Communications CommissionFERFraue Error RateFITField Effect TransistorFLIRSFrequency Shift KeyingGSKGaussin Frequency Shift KeyingGPIOGeneral PurposeGPIOInput / OutputIInput / OutputI/OInput / OutputI/OInput / OutputI/OInsulated-Gate Bipolar TransistorIRTInterruptIPCInterruptIPCInterruptIPCInterruptIPCInterruptIPCInterruptIPCInterrupt addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIndustrial, Scientific, and MedicalISPIndustrial Telecommunications UnionIEDECLight-Emiting DiodeIspateLight-Emiting DiodeISSLeast Significant BitLSBLeast Significant BitLSBLeast Significant BitLSBLeast Significant BitLSBLeast Significant BitLSBLeast Significant BitLSBLeast Significant Bi	СОМ	
CRCCyclic Redundancy CheckDDifferentialD-Differential MinusD+Differential PlusDACDijfat-to-Analog ConverterDCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookESDElectronic CodeBookESDElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesFSTFrade Error RateFCCFederal Communications CommissionFERFrade Error RateFITField Effect TransistorFLIRSFrequenty Listening Routing SlaveFSKGaussian Frequency Shift KeyingGPIOGeneral PurposeGPIOGeneral PurposeIInputI/OInput / OutputI/OInput / OutputI/OInsulated-Gate Bipolar TransistorIRTIntermediate FrequencyIRAInfarredIRAInfarredIRAInfarredIRAInfarredIRAInfarredISMInductial Zicentific, and MedicalISPIoint Electronneuting Routing SlaveISPInductial Scientific, and MedicalIFIntermediate FrequencyIFIntermediate FrequencyIRAInterroptIPCInterroptIPCInterroptISMInductial Scientific, and MedicalISPInductial Zicentific and MedicalISPIoint Electron Device Engineering CouncilLEDL	CPU	Central Processing Unit
DDifferentialD-Differential MinusD-Differential PlusDACDigital-to-Analog ConverterDCDirect CurrentDCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookEMSElectronic Manufacturing ServicesSDElectronic Manufacturing ServicesFDCFederal Communications CommissionFERFederal Communications CommissionFERFrequency Shift KeyingFSKFrequency Shift KeyingGPSGeneral PurposeGPIOGeneral PurposeGPIOGeneral PurposeI/OInput / OutputIInsulated-Gate Bipolar TransistorIFFInsulated-Gate Bipolar TransistorIFGInsulated-Gate Bipolar TransistorIFGInferredIRAMIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISMIn	CRC	-
D+Differential PlusDACDijtal-to-Analog ConverterDCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookEMSElectronic Manufacturing ServicesESDElectron-Static DischargeFCCFederal Communications CommissionFERFrame Error RateFTField Effect TransistorFLIRSFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPIOGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputI/CIntermediate FrequencyIFFIntermediate ErequencyIFFIntermediate ErequencyIRAInfaredIRAInfaredIRAInfaredIRAIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryIFFJosten Toronscing OutputIFAIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISMIndirectly addressable Random Access MemoryISDECJosten Teron Device Engineering CouncilISDEJosten Teron	D	
DACDigital-to-Analog ConverterDCDirect CurrentDMADirect CurrentDMADirect Memory AccessECBElectronic CodeBookEMSElectronic Manufacturing ServicesESDElectron-Static DischargeFCCFederal Communications CommissionFERFrame Error RateFTTField Effect TransistorFKKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPOGeneral PurposeGPIGeneral Purpose Input OutputIInputI/OInput / OutputICInterruetiate FrequencyIFFInterruetiate FrequencyIRInterruetiate FrequencyIRInterruetiate Greating and Packaging CircuitsIRInfaredISPIndirectly addressable Random Access MemoryISPIndirectly addressable Random Access MemoryITUInterrueticate Significant BitISPLeast Significant BitLSBLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	D-	Differential Minus
DCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookEMSElectronic Manufacturing ServicesESDElectro-Static DischargeFCCFederal Communications CommissionFERFrame Error RateFETField Effect TransistorFLIRSFrequently Listening Routing SlaveFSKFrequency Shift KeyingGPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputI/OInput / OutputIGBTIntermediate FrequencyIFIntermediate FrequencyIRAInfaredINTInterruptIPCInterruptIRAInfaredIRAIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbabLeast Significant BitLSBLeast Significant BitLSBLeast Significant BitLSBMCUMCUMicro-Controller Unit	D+	Differential Plus
DCDirect CurrentDMADirect Memory AccessECBElectronic CodeBookEMSElectronic Manufacturing ServicesESDElectro-Static DischargeFCCFederal Communications CommissionFERFrame Error RateFETField Effect TransistorFLIRSFrequently Listening Routing SlaveFSKFrequency Shift KeyingGPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputI/OInput / OutputIGBTIntermediate FrequencyIFIntermediate FrequencyIRAInfaredINTInterruptIPCInterruptIRAInfaredIRAIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbabLeast Significant BitLSBLeast Significant BitLSBLeast Significant BitLSBMCUMCUMicro-Controller Unit	DAC	Digital-to-Analog Converter
ECBElectronic CodeBookEMSElectronic Manufacturing ServicesESDElectronic Manufacturing ServicesESDElectro-Static DischargeFCCFederal Communications CommissionFERFrame Error RateFTField Effect TransistorFLIRSFrequently Listening Routing SlaveFSKGaussian Frequency Shift KeyingGFPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputICIntegrated CircuitIFInstanted FrequencyIFIntegrated CircuitIFInterroting and Packaging CircuitsIRInfaredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInterrutional Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Entiting DiodeIsSLeast Significant BitLSBLeast Significant Bit <trt< td=""><td>DC</td><td></td></trt<>	DC	
EMSElectronic Manufacturing ServicesESDElectro-Static DischargeFCCFederal Communications CommissionFERFrade Error RateFTTField Effect TransistorFLIRSFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPIOGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputICIntegrated CircuitIFIntegrated CircuitIFIntermediate FrequencyIRTInterruptIRTInterruptIRTInterruptIPCInterruptIRTInterruptIRTInterruptIRTInterruptIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIoht Electron Device Engineering CouncilIEDLight-Emiting DiodeIspatical Significant BitLeast Significant BitISSLeast Significant Bit <td>DMA</td> <td>Direct Memory Access</td>	DMA	Direct Memory Access
ESDElectro-Static DischargeFCCFederal Communications CommissionFERFrame Error RateFETField Effect TransistorFLIRSFrequenty Listening Routing SlaveFSKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPIOGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OIntegrated CircuitIFIntegrated CircuitIFIntegrated CircuitIFIntegrated CircuitIRInsulated-Gate Bipolar TransistorINTInterruptIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIspatLeast Significant BitLSSLeast Significant Byte	ECB	Electronic CodeBook
FCCFederal Communications CommissionFERFrame Error RateFETField Effect TransistorFLiRSFrequently Listening Routing SlaveFSKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPIOGeneral PurposeGPIOGeneral Purpose Input OutputIInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterronecting and Packaging CircuitsIRInfaredIRAMIndurctly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPECJoint Electorn Device Engineering CouncilLEDLight-Entring DiodeIsbhLeast Significant BitLSSLeast Significant BitLSSLeast Significant BitLSSLeast Significant BitLSSLeast Significant ByteMCUMicro-Controller Unit	EMS	Electronic Manufacturing Services
FERFrame Error RateFETField Effect TransistorFLIRSFrequently Listening Routing SlaveFSKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPGeneral PurposeGPI0General Purpose Input OutputIInputI/OInput / OutputICIntegrated CircuitIFIntegrated CircuitIFInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRAMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLeast Significant BitLSSLeast Significant BitLSSLeast Significant ByteMCUMicro-Controller Unit	ESD	Electro-Static Discharge
FETField Effect TransistorFLIRSFrequently Listening Routing SlaveFSKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPUGeneral PurposeGPI0General Purpose Input OutputIInputI/OInput / OutputICIntegrated CircuitIFInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLeast Significant BitLSBLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	FCC	Federal Communications Commission
FLiRSFrequently Listening Routing SlaveFSKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputI/OInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInfaredIRAMInfaredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPJoint Electron Device Engineering CouncilIEDLight-Emitting DiodeIsbLeast Significant BitLSSLeast Significant ByteMCUMicro-Controller Unit	FER	Frame Error Rate
FSKFrequency Shift KeyingGFSKGaussian Frequency Shift KeyingGPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfarredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	FET	Field Effect Transistor
GFSKGaussian Frequency Shift KeyingGPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLeast Significant BitLSBLeast Significant BitMCUMicro-Controller Unit	FLIRS	Frequently Listening Routing Slave
GPGeneral PurposeGPIOGeneral Purpose Input OutputIInputI/OInput / OutputI/OInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	FSK	Frequency Shift Keying
GPIOGeneral Purpose Input OutputIInputI/OInput / OutputI/OInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfaredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	GFSK	Gaussian Frequency Shift Keying
IInputI/OInput / OutputI/CIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	GP	General Purpose
I/OInput / OutputICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	GPIO	General Purpose Input Output
ICIntegrated CircuitIFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	I	
IFIntermediate FrequencyIGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit	I/O	Input / Output
IGBTInsulated-Gate Bipolar TransistorINTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		-
INTInterruptIPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
IPCInterconnecting and Packaging CircuitsIRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		Insulated-Gate Bipolar Transistor
IRInfraredIRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
IRAMIndirectly addressable Random Access MemoryISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
ISMIndustrial, Scientific, and MedicalISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
ISPIn-System ProgrammingITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
ITUInternational Telecommunications UnionJEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodelsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
JEDECJoint Electron Device Engineering CouncilLEDLight-Emitting DiodelsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
LEDLight-Emitting DiodeIsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
IsbLeast Significant BitLSBLeast Significant ByteMCUMicro-Controller Unit		
LSB Least Significant Byte MCU Micro-Controller Unit		
MCU Micro-Controller Unit		-
MIC Ministry of Internal affairs and Communications, Japan		
	MIC	Ministry of Internal affairs and Communications, Japan

Abbreviation	Description
MISO	Master In, Slave Out
MOSI	Master Out, Slave In
msb	Most Significant Bit
MSB	Most Significant Byte
NMI	Non-Maskable Interrupt
NRZ	Non-Return-to-Zero
NVM	Non-Volatile Memory
NVR	Non-Volatile Registers
0	Output
OEM	Original Equipment Manufacturer
OFB	Output FeedBack
Pb	Lead
PCB	Printed Circuit Board
POR	Power-On Reset
PWM	Pulse Width Modulator
RAM	Random Access Memory
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
ROM	Read Only Memory
RS-232	Recommended Standard 232
RX	Receive
S	Supply
SAW	Surface Acoustic Wave
SCK	Serial Clock
SFR	Special Function Register
SiP	System-in-Package
SOM	System-On-Module
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
то	Timer 0
T1	Timer 1
ТХ	Transmit
UART	Universal Asynchronous Receiver Transmitter
USB	Universal Serial Bus
WUT	Wake-Up Timer
XRAM	External Random Access Memory
XTAL	Crystal
ZEROX	Zero Crossing

12 REVISION HISTORY

Date	Version	Affected	Revision
2018/02/19	15	§6, Table 6.1	Updated Korea frequency
2017/06/27	14	§ 5.9.1	Clarified transmitter is calibrated from factory
2017/04/11	13	Figure 4.1	Figure 4.1 updated with to scale drawing, and placement of
			pads, some notations changed from diameter to radius.
			Figure 9.1 updated dimensions and placement of land
		Figure 9.1	patterns to fit module pads.
2017/02/09	12	§ 10.1.1	Pin 1 Quadrant corrected to "Q3"
2016/12/20	11	Table 5.5	Cleaned up "TDB"
2016/11/24	10	§ 10	Add Reel information from source B
2016/10/26	9	Table 6.1	Corrected frequency accuracy to worst case figure
2016/4/29	8	\$2.2.4	Updated wording in section 2.2.4 Crystal driver and system clock
2015/4/28	7	Figure 9.1	Updated to align with SD3502 recommendation.
		Table 9.2	Removed – information included in updated Figure 9.1
		§8	Added section Process Specification
		§10.1	Added orientation of component in tape
		Figure 4.1	Corrected length of Signal Pin and Ground Pin
		§7.2, Table 7.2	Added tolerances to module dimensions
2015/1/30	6B	Table 6.1	Added frequency accuracy
2013/12/13	5	Table 2.1	Entries in table of CPU modes rephrased
2013/12/12	4A	Table 2.1,	Reduced the RESET_N high time
		§2.4.1	Increased the RESET_N low time
2013/10/31	3B	§Cover,	Updated performance values
		Figure 2.1,	Added LED controller
		Table 2.3,	Updated INT1 pins
		Figure 2.7,	Updated caption
		Table 4.3,	Changed to master I/O mode
		§5.1,	Updated final test description
		Table 5.5, Figure 5.2,	Updated TX current consumption
		Table 5.20, Figure 5.3,	Updated TX power and performance
		Table 5.22,	Updated LO leakage
		§5.9.2	Updated equation for 1 st -order approximation
2013/10/29	3A	§Cover,	Updated performance values
		Figure 2.1,	Updated matching description
		§2.1,	Added CPU modes
		Table 2.2, Table 2.3,	Updated pin numbers
		§2.2.2,	Added source impedance formula
		§2.2.9,	Added LED controller
		Figure 2.5,	Updated SPI slave connection
		§2.2.12,	Added Timers
		§4.1,	Removed 'weak' from pull-up description
		Table 4.3,	Updated pin names
		Table 4.8,	Added LED interface pin
		Table 4.10,	Added Timer interface pins
		Table 5.1,	Added maximum RF input
		Table 5.5,	Updated current consumption values
		Figure 5.2,	Updated transmit current consumption
		Table 5.12,	Updated programming time
		Table 5.16, Table 5.18,	Added pull-up resistor value
		Table 5.20, Figure 5.3,	Updated TX power and harmonics
		§5.9.1,	Added mandatory TX calibration
L		-	

Date	Version	Affected	Revision
		Table 5.21, Figure 5.4,	Updated sensitivity values
		Table 5.22,	Updated blocking and LO leakage
		Figure 5.5,	Updated RSSI values
		Figure 7.1	Updated module marking
2013/09/12	2A	§Cover,	Updated the features and module items
		§2.2.5,	Added GPIO description
		§2.2.10, §2.2.11,	Added peripheral designators
		Figure 4.1,	Added pin dimensions
		§5.9,	Removed impedance plots
		Table 5.15, Table 5.18,	Changed the supply voltage range and clock speed of external
		§6,	NVM
		Table 7.2	Corrected Korean frequency
			Added module dimensions
2013/06/03	1G	Table 2.3,	Removed empty line from interrupt table
		Table 5.8	Added state transition times
2013/05/31	1E	§All	Updated IO characteristics
2013/05/20	1C	§All	Updated layout, and data from the latest corner tests
2013/02/22	1A	§All	Preliminary draft released
2013/02/18	1A	§All	Initial draft

DATASHEET: ZM5202

13 REFERENCES

- [1] INS11681, Instruction, "500 Series Z-Wave Chip Programming Mode"
- [2] DSH12436, Datasheet, "ZDB5202 Z-Wave Development Board"
- [3] INS12213, Instruction, "500 Series Hardware Integration Guide"
- [4] DSH11243, Datasheet, "ZDP03A, Z-Wave Development Platform"

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific vitten consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sub-GHz Modules category:

Click to view products by Silicon Labs manufacturer:

Other Similar products are found below :

HMC-C024nRF24L01P-MODULE-SMACMD-KEY2-418-CREV640-A90SM1231E868HMC-C582SM-MN-00-HF-RCHMC-C031LoRa Node Kit(US)Sierra HL7588 4G KIT(US)WISE-4610-S672NAEC21AUFA-MINIPCIEEC21EUGA-MINIPCIECS-EASYSWITCH-25EC21JFB-MINIPCIEDL-RFM95-915MDL-RFM96-433MRa-07H-V1.1Ra-07Ra-01SHRa-01S-TRa-01SH-TCMD-HHCP-418-MDCMD-HHCP-433-MDCMD-HHLR-418-MD209500000200XB9X-DMRS-03120911051101COM-13909HMC-C033COM-13910WRL-14498SX1276RF1KASHMC-C011HMC-C014HMC-C050HMC-C001HMC-C030HMC-C021HMC-C041HMC-C042HMC-C048HMC-C051HMC-C072HMC-C088A2500R24C00GM702-WHUM-900-PRC