

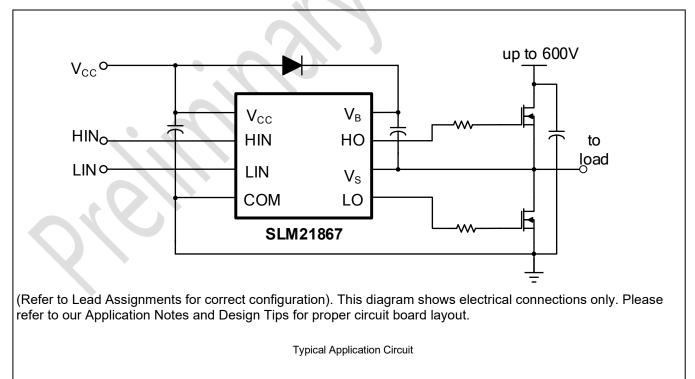
600V High and Low Side Driver

PRODUCT SUMMARY

•	VOFFSET	600 V max.
•	lo+/-	4 A / 4 A
•	Vout	7 V - 20 V

• t_{on/off} (typ.) 170ns / 170ns

GENERAL DESCRIPTION

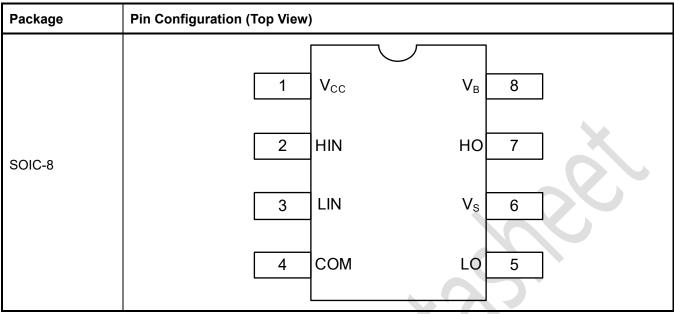

The SLM21867 is a high voltage, high speed power MOSFET and IGBT drivers with independent highand low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

• Floating channel designed for bootstrap operation

SLM21867

- Fully operational to +600 V
- Low Vcc operation
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 7 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, and 5 V logic compatible
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant
- SOIC-8 package



TYPICAL APPLICATION CIRCUIT

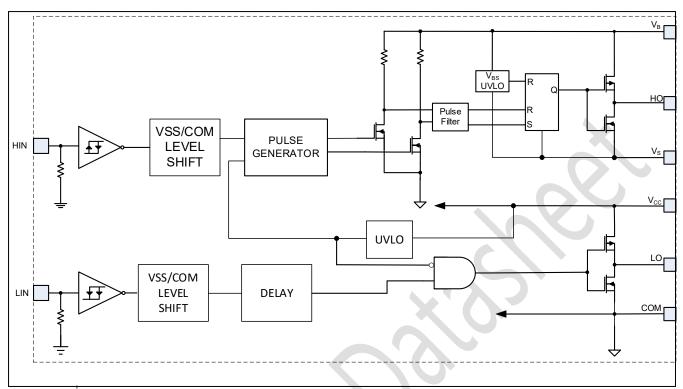
SLM21867

PIN CONFIGURATION

PIN DESCRIPTION

No.	Pin	Description
1	Vcc	Low-side and logic fixed supply
2	HIN	Logic input for high-side gate driver output (HO), in phase
3	LIN	Logic input for low-side gate driver output (LO), in phase
4	COM	Low-side return
5	LO	Low-side gate drive output
6	Vs	High-side floating supply return
7	HO	High-side gate drive output
8	VB	High-side floating supply

ORDERING INFORMATION


Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM21867CA-DG	SOIC8, Pb-Free	2500/Reel
SLM21867CA-TG	SOIC8, Pb-Free	100/Tube

SILLUMIN

FUNCTIONAL BLOCK DIAGRAM

SLM21867

SLM21867

SLM21867

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units	
VB	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset vo	ltage	V _B - 25	V _B + 0.3	
Vно	High-side floating output voltage	je	Vs-0.3	V _B + 0.3	V
Vcc	Low-side and logic fixed supply vo	oltage	-0.3	25	v
VLO	Low-side output voltage		-0.3	V _{CC} + 0.3	
VIN	Logic input voltage (HIN & LIN	-0.3	Vcc + 0.3		
dVs/dt	Allowable offset supply voltage transient			50	V/ns
D		PDIP-8		1.0	14/
PD	Package power dissipation @ $T_A \leq +25^{\circ}C$	SOIC-8		0.625	W
Dth		PDIP-8		125	°0444
Rth _{JA}	Thermal resistance, junction to ambient SOIC-8			200	°C/W
TJ	Junction temperature			150	
Ts	Storage temperature		-55	150	°C
T∟	Lead temperature (soldering, 10 seconds)			300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
Vв	High-side floating absolute voltage	Vs+10	Vs + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
V _{HO}	High-side floating output voltage	Vs	VB	v
Vcc	Low-side and logic fixed supply voltage	10	20	v
V _{LO}	Low-side output voltage	0	Vcc	
Vin	Logic input voltage (HIN & LIN)	СОМ	Vcc	
TA	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

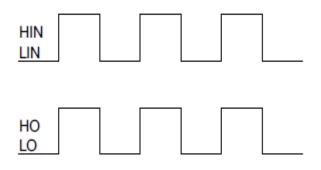
SILLUMIN

DYNAMIC ELECTRICAL CHARACTERISTICS

VBIAS (V_{CC}, V_{BS}, V_{DD}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _S = 0 V		170	250	
t _{off}	Turn-off propagation delay	Vs = 600 V		170	250	
tr	Turn-on rise time			22	38	Ns
t _f	Turn-off fall time			18	30	
MT	Delay matching, HS & LS turn-on/off				35	

STATIC ELECTRICAL CHARACTERISTICS


 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM and are applicable to all three logic input leads: HIN and LIN. The V_0 and I_0 parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VIH	Logic "1" input voltage		2.5			
VIL	Logic "0" input voltage	V _{CC} = 7 V to 20V			0.8	
V _{он}	High level output voltage, V _{BIAS} - V _O				1.4	V
Vol	Low level output voltage, Vo	I ₀ = 20 mA		0.02	0.15	
I _{LK}	Offset supply leakage current	V _B = V _S = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current		20	60	400	
lqcc	Quiescent V _{CC} supply current	$V_{IN} = 0 V \text{ or } 5 V$	200	290	400	μA
I _{IN+}	Logic "1" input bias current	HIN=LIN = 5V		60	70	
I _{IN-}	Logic "0" input bias current	HIN=LIN= 0V	N= 0V		5	1
VBSUV+	V _{BS} supply undervoltage positive going threshold		5.65	6.25	6.85	v
VBSUV-	V _{BS} supply undervoltage negative going threshold		5.15	5.75	6.35	V
V _{CCUV+}	V _{cc} supply undervoltage positive going threshold		5.65	6.25	6.85	v
Vccuv-	V _{cc} supply undervoltage negative going 5.15 threshold		5.75	6.35	v	
lo+	Output high short circuit pulsed current	V _O = 0 V V _{IN} = Logic "1" PW ≤ 10 µs	3.0	4.0		A
lo-	Output low short circuit pulsed current	V _O = 15 V V _{IN} = Logic "0" PW ≤ 10 μs	3.0	4.0		

Switching and Timing Relationships

The relationships between the input and output signals of the SLM21867 are illustrated below in Figures 1, 2. From these figures, we can see the definitions of several timing parameters (i.e., t_{ON} , t_{OFF} , t_{R} , and t_{F}) associated with this device.

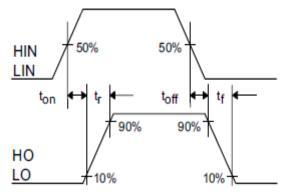
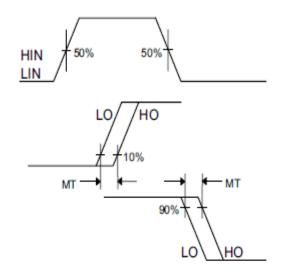
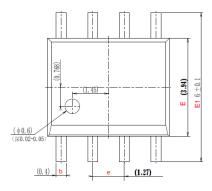
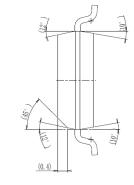
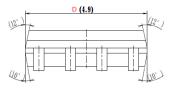


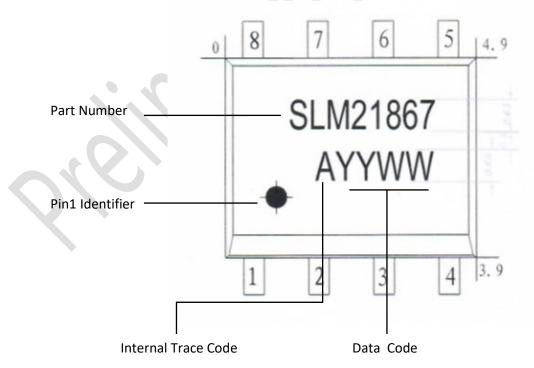
Figure 2. Switching Time Waveform Definitions


Figure 3. Delay Matching Waveform Definitions


SLM21867

PACKAGE CASE OUTLINES



字符	Dim	ension millimete	ers
7-17	Min	Standard	Max
Α	1.500	1.600	1.700
A1	0.050	0.165	0.250
A2	1.350	1.450	1.550
b	0.300	0.400	0.500
с	0.220	0.254	0.280
D	4.800	4.900	5.000
E	3.840	3.940	4.040
E1	5.900	6.000	6.100
е		1.27 (BSC)	
L	0.520	0.620	0.720
θ	0°		8°

PART MARKING INFORMATION

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)				
Rev 0.1 datasheet, 2019-9-1					
Whole document	Draft datasheet released				
Rev 0.2 datasheet, 2020-1-1	Rev 0.2 datasheet, 2020-1-14				
Page 2	Change order information				
Page 7	Add part marking information				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Drivers & Controllers category:

Click to view products by Sillumin manufacturer:

Other Similar products are found below :

ICB2FL01G LC74761M-9006-E MP3360DG-LF-P HV5812PJ-G-M904 TW8813-LB2-GR TW8819AT-NA2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR S1D13503F00A200 MAX7370ETG+T LX27901IDW STVM100DC6F DS3994Z+T&R S1D13515F00A100 LX1686EIPW AM26C32IDR MAX7370ETG+ LX1688IPW MAX1739EEP+ MAX17126BETM+ MAX14515AEWA+T DS3992Z-18P BTM7710GXUMA1 DS3881E+C S1D13742F01A200 LX1688CPW MAX17126AETM+ MAX8729EEI+ MAX7370ETG TIOS1013DMWR TLD5097EL HV857LK7-G TLD5097ELXUMA1 AAT2823IBK-1-T1 DLPA1000YFFT ICB2FL01GXUMA2 DLP2000FQC SC401U IR2117PBF PAD1000YFFR S1D13746F01A600 S1D13748B00B100 FIN324CMLX STVM100DS6F HV850MG-G AD8138ARZ-R7 AD8387JSVZ ADDI9023BBCZ ADM3202ARUZ-REEL7