SLM27523, SLM27524, SLM27525

Dual-Channel, High-Speed, Low-Side Gate Driver

GENERAL DESCRIPTION

The SLM2752x family of devices are dual-channel, high-speed, low-side gate drivers that can effectively drive MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, SLM2752x can source and sink high peakcurrent pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay, typically 18 ns .
The SLM2752x provides 4.5 A source, 5.5 A sink peak drive current capability at 12V VDD supply.

APPLICATIONS

- Switching mode power supplies
- DC-to-DC converters
- Motor Control, solar power
- Gate driver for emerging wide band-gap power devices such as GaN

FEATURES

- Two independent gate drive channels
- 4.5 A peak source and 5.5 A peak sink current drive capability
- Fast propagation delay (18 ns typical)
- Fast rise and fall time (7 ns and 6 ns typical)
- 4.5 to 20 V single supply range
- Under-voltage lockout
- TTL and CMOS compatible input logic threshold
- Ability to handle negative voltages $(-5 \mathrm{~V})$ at inputs
- 2 ns typical delay matching between 2 channels
- Two outputs are paralleled for higher drive current
- Outputs held in low when inputs floating
- Operating temperature range of $-40^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$
- SOP8 and MSOP8-EP package options

TYPICAL APPLICATION CIRCUIT

Figure 1. Typical Application Circuit

Table of Contents

General Description 1
Applications 1
Features 1
Typical Application Circuit 1
PIN Configuration 3
PIN Description 3
Functional Block Diagram 4
Absolute Maximum RatingS ${ }^{1,2,3}$ 5
Recommended Operation Conditions 5
Thermal Resistance 5
Ordering Information 6
Dynamic Electrical Characteristics 7
Static Electrical Characteristics 7
Typical Performance Characteristic 9
Feature Description 12
VDD and Under-Voltage Lockout 12
Input Stage 12
Enable Function 12
Output Stage 12
Package Case Outlines 13
Revision History 14 SLM27523, SLM27524, SLM27525

PIN CONFIGURATION

Package	Pin Configuration (Top View)		
	SLM27523	SLM27524	SLM27525
	Dual Inverting Inputs	Dual Non-Inverting Inputs	One Inverting and One Non-Inverting Input
SOP8 /MSOP8-EP			

PIN DESCRIPTION

No.	Pin	Description
1	ENA	Enable input for channel A: ENA is biased LOW to disable the channel A output regardless of the INA state. ENA is biased HIGH or left floating to enable the channel A output. ENA is allowed to float.
2	INA	Input to channel A: Inverting input in the SLM27523 and SLM27525. Non-Inverting input in the SLM27524. OUTA is held LOW if INA is unbiased or floating.
3	GND	Ground: All signals are referenced to this pin.
4	INB	Input to channel B: Inverting input in the SLM27523. Non-Inverting input in the SLM27524 and SLM27525. OUTB is held LOW if INB is unbiased or floating.
5	OUTB	Output of channel B.
6	VDD	Bias Supply Input.
7	OUTA	Output of channel A
8	ENB	Enable input for channel B: ENB is biased LOW to disable the channel B output regardless of the INB state. ENB is biased HIGH or left floating to enable the channel B output. ENB is allowed to float.
	EP	Exposed pad, connect to ground. Only for MSOP8-EP

FUNCTIONAL BLOCK DIAGRAM

Figure 2. SLM27523 Block Diagram

Figure 3. SLM27524 Block Diagram

Figure 4. SLM27525 Block Diagram

SLM27523, SLM27524, SLM27525

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2,3}$

Symbol	Description	Min.	Max.	Units
VDD	Supply voltage	-0.3	25	v
Vo	Continuous voltage on OUTx	-0.3	$\mathrm{V}_{\mathrm{DD}}+0.3$	
	Repetitive pulse less than 200ns ${ }^{4}$	-2	$\mathrm{V}_{\mathrm{DD}}+0.3$	
lo	Source Continuous Current on OUTx		0.3	A
	Source Pulsed Current on OUTx ($0.5 \mu \mathrm{~s})^{4}$		4.5	
	Sink Pulsed Current on OUTx (0.5 $\mu \mathrm{s})^{4}$		5.5	
$\begin{gathered} \text { INA, INB, ENA, } \\ \text { ENB } \end{gathered}$	Voltage on INA, INB, ENA, ENB.	-6	25	V
TJ	Operation junction temperature range	-40	150	${ }^{\circ} \mathrm{C}$
TL	Lead temperature (soldering, 10 seconds)		300	
Ts	Storage temperature	-55	150	

1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2) All voltages are with respect to GND unless otherwise noted.
3) These devices are sensitive to electrostatic discharge; follow proper device-handling procedures.
4) Values are verified by characterization on bench.

RECOMMENDED OPERATION CONDITIONS

Over operating free-air temperature range (unless otherwise noted)

Symbol	Definition	Min	Max	Units
$V_{D D}$	Supply voltage	4.5	20	V
INA, INB	Input voltage	-5	20	
ENA, ENB	Enable voltage	-5	20	
TJ	Operation junction temperature range	-40	140	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Package	θ_{JA}	Units
SOP8	130	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSOP8-EP	63	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING INFORMATION

Order Part No.	Package	QTY
SLM27523CA-DG	SOP8, Pb-Free	$2500 /$ Reel
SLM27524CA-DG	SOP8, Pb-Free	$2500 /$ Reel
SLM27525CA-DG	SOP8, Pb-Free	$2500 /$ Reel
SLM27523GB-DG	MSOP8-EP, Pb-Free	$4000 /$ Reel
SLM27524GB-DG	MSOP8-EP, Pb-Free	$4000 /$ Reel
SLM27525GB-DG	MSOP8-EP, Pb-Free	$4000 /$ Reel

SLM27523, SLM27524, SLM27525

DYNAMIC ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
t_{R}	Rise time ${ }^{1}$	Cload = 1.8 nF		7	15	ns
t_{F}	Fall time ${ }^{1}$	CLoad $=1.8 \mathrm{nF}$		6	10	
tm_{M}	Delay matching between two channels	INA = INB, OUTA and OUTB at 50\% transition point		2	4	
tpw	Minimum input pulse width that changes the output state			15	25	
$t_{\text {D1 }}, t_{\text {D2 }}$	Input to output propagation delay ${ }^{1}$	Cload $=1.8 \mathrm{nF}, 5 \mathrm{~V}$ input pulse	7	18	26	
$t_{\text {D3 }}, t_{\text {D } 4}$	EN to output propagation delay ${ }^{1}$	Cload $=1.8 \mathrm{nF}$, 5 V enable pulse	7	18	26	

1) See timing diagrams in Figure 5 to Figure 8.

STATIC ELECTRICAL CHARACTERISTICS

$V_{D D}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$ and $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Condition	Min	Typ	Max	Unit
ldD (off)	Startup current	$\begin{aligned} & \mathrm{V} \mathrm{DD}=3.4 \mathrm{~V} \\ & \mathrm{INA}=\mathrm{INB}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	55	110	250	uA
		$\begin{aligned} & \mathrm{VDD}=3.4 \mathrm{~V}, \\ & \mathrm{INA}=\mathrm{INB}=\mathrm{GND} \end{aligned}$	55	110	250	
VDDUV+	Undervoltage positive going threshold	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	3.9	4.2	4.5	V
		$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $140{ }^{\circ} \mathrm{C}$	3.8	4.2	4.6	
Voduv-	Undervoltage negative going threshold		3.7	3.9	4.4	
VDD_H	Supply voltage hysteresis			0.3		
V_{IH}	Input signal high threshold	Applied to INA, INB, ENA, ENB	1.6	1.9	2.3	
VIL	Input signal low threshold	Applied to INA, INB, ENA, ENB	1.0	1.3	1.5	
lo	Source peak current	$\mathrm{CLL}^{\text {}}=0.22 \mu \mathrm{~F}$		4.5		A
	Sink peak current	$\mathrm{C}_{\mathrm{L}}=0.22 \mu \mathrm{~F}$		5.5		
VOH	High level output voltage	$\mathrm{l} \mathrm{O}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{O}}$		0.008	0.016	V
Vol	Low output voltage	l O $=10 \mathrm{~mA}$		0.005	0.009	
Rон	Output pull-up resistance	$\mathrm{lo}=-10 \mathrm{~mA}$	0.5	0.8	1.6	Ω
Rol	Output pull-down resistance	$\mathrm{lo}=10 \mathrm{~mA}$	0.3	0.5	0.9	

SLM27523, SLM27524, SLM27525

Figure 5. Enable Function for Non-Inverting Input Driver

Figure 7. Non-Inverting Input Driver Operation

Figure 6. Enable Function for Inverting Input Driver

Figure 8. Inverting Input Driver Operation

SLM27523, SLM27524, SLM27525

TYPICAL PERFORMANCE CHARACTERISTIC

Figure 9. Startup Current vs Temperature, VDD=3.4V

Figure 11. Supply Current vs Temperature (Output in DC ON/OFF condition, $\mathrm{ENx}=\mathrm{VDD}=12 \mathrm{~V}$)

Figure 13. Input Threshold vs Temperature, VDD=12V

Figure 10. Operating Supply Current vs Temperature

Figure 12. UVLO Threshold vs Temperature

Figure 14. Enable Threshold vs Temperature

SLM27523, SLM27524, SLM27525

Figure 15. Output Pull-up Resistance vs Temperature

Figure 17. Rise Time vs Temperature

Figure 19. Input to Output Propagation Delay vs Temperature

Figure 16. Output Pull-down Resistance vs Temperature

Figure 18. Fall Time vs Temperature

Figure 20. Enable to Output Propagation Delay vs Temperature

SLM27523, SLM27524, SLM27525

Figure 21. Operating Supply Current vs Frequency

Figure 23. Rise Time vs Supply Voltage

Figure 22. Propagation Delay vs Supply Voltage

Figure 24. Fall Time vs Supply Voltage

SLM27523, SLM27524, SLM27525

FEATURE DESCRIPTION

VDD and Under-Voltage Lockout

The SLM2752x device has internal UVLO protection feature on the VDD pin supply circuit blocks. Whenever the driver is in UVLO condition (for example when V_{DD} voltage is less than VDDUV+ during power up or when VDD voltage is less than Voduv- during power down), this circuit holds all outputs LOW, regardless of the status of the inputs. The UVLO is typically 4.2 V with 300 mV typical hysteresis. This hysteresis helps prevent chatter when low V_{DD} supply voltage have noise from the power supply and also when there are droops in the VDD bias voltage when the system starts switching and there is a sudden increase in $I_{D D}$.

Input Stage

The input pins of the SLM2752x gate driver are based on a TTL and CMOS compatible input threshold logic that is independent of the VDD supply voltage. With typically high threshold $=1.9 \mathrm{~V}$ and typically low threshold $=1.3 \mathrm{~V}$, the logic level thresholds are conveniently driven with PWM control signals derived from 3.3 V and 5 V digital powercontroller devices. SLM2752x also features tight control of the input pin threshold voltage levels which eases system design considerations and ensures stable operation across temperature. The very low input capacitance on these pins reduces loading and increases switching speed.

The SLM2752x features an important safety feature wherein, whenever any of the input pins is in a floating condition, the output of the respective channel is held in the low state. This is achieved using GND pull-down resistors on all the non-inverting input pins and Vod pull-up resistors on all the inverting input pins (INA, INB), as shown in the device block diagrams.

The input stage of each driver is driven by a signal with a short rise or fall time. This condition is satisfied in typical power supply applications, where the input signals are provided by a PWM controller or logic gates with fast transition time. With a slow changing input voltage, the output of the driver may switch repeatedly at a high frequency. While the wide hysteresis offered in SLM2752x definitely alleviates this concern over most other TTL input threshold devices, extra care is necessary in these implementations. If limiting the rise or fall times to the power device is the primary goal, then an external resistance is highly recommended between the output of the driver and the power device.

Enable Function

SLM2752x is provided with independent enable pins ENx for exclusive control of each driver channel operation. The enable pins are based on a non-inverting configuration (active high operation). Thus, when ENx pins are driven high, the drivers are enabled and when ENx pins are driven low, the drivers are disabled. Like the input pins, the enable pins are also based on a TTL and CMOS compatible input threshold logic that is independent of the supply voltage and are effectively controlled using logic signals from 3.3V and 5V microcontrollers. The SLM2752x also features tight control of the enable function threshold voltage levels which eases system design considerations and ensures stable operation across temperature. The ENx pins are internally pulled up to VDD using pull-up resistors as a result of which the outputs of the device are enabled in the default state. Hence the ENx pins are left floating or Not Connected (N/C) for standard operation, where the enable feature is not needed. If the channel A and channel B inputs and outputs are connected in parallel to increase the driver current capacity, ENA and ENB are connected and driven together.

The enable function is an extremely beneficial feature in gate driver devices especially for certain applications such as synchronous rectification where the driver outputs disabled in light load conditions to prevent negative current circulation and to improve light load efficiency.

Output Stage

Each output stage in the SLM2752x device is capable of supplying 4.5 A peak source and 5.5 A peak sink current pulses. The output voltage swings between VDD and GND providing rail-to-rail operation, thanks to the MOS-output stage which delivers very low drop-out.

The channel A and channel B outputs can be paralleled to provide higher driver current capability. In such application, the INA and INB need to be connected together and ENA, ENB also need be connected together.
For example, in applications that have zero voltage switching during power MOSFET turn-on or turn-off interval, the driver supplies high peak current for fast switching even though the miller plateau is not present. This situation often occurs in synchronous rectifier applications because the body diode is generally conducting before power MOSFET is switched on.

PACKAGE CASE OUTLINES

Figure 25. SOP8 Package Outline Dimensions

Figure 26. MSOP8-EP Package Outline Dimensions

REVISION HISTORY

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)
Rev 1.0 datasheet : 2022-01-26	
Whole document	Initial datasheet release
Rev 1.1 datasheet : 2022-04-28	
Page 5	Add the thermal resistance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Sillumin manufacturer:
Other Similar products are found below :
56956 57.404.7355.5 LT4936 57.904.0755.0 5811-0902 0131700000 LTP70N06 LVP640 5J0-1000LG-SIL LY2-US-AC240 LY3-UADC24 LZNQ2-US-DC12 LZP40N10 60100564 60249-1-CUT-TAPE $01342200006035 \underline{60713816} \underline{61161-90}$ 6131-204-23149P 6131-20517149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63 6150-5001 CSB4 CSK-38-60006 CSK-38-60008 621A 622-4053LF 6273 M40N08MA-H M55155/29XH06 64-807 65-1930-6 CV500ISB02 M83723/88Y1407N CWD012-2 CWD03-3 CX3225SB16934D0PPSC2 CX5032GB10000D0PPS02 687-772NF1 70.140.1653 70.200.0653.0 703001B01F060 70-3601 706006D02F0601

