DC Voltage

Falcon F35 Series Digital Panel Meter

- Full 3-1/2 Digit, Bright Red 0.56" (14.2mm) Display
- Broad Range Display Scaling
- Short 2.94" (74.7mm) Deep, 1/8 DIN Case
- Screw Terminal Connector for Easy Installation
- Four User-Settable Ranges: 200mV, 2V, 20V, 200 V
- Jumper-Selectable Decimal Point
- Optional Isolated 9-32VDC Power Supply
- Optional Excitation Output of 12VDC or 24VDC

The Falcon Series digital indicators are premium quality 1/8 DIN meters for industrial applications. All Falcon units feature jumper selectable decimal point (internal and on the connector for remote decimal point) and display scaling, providing wide application flexibility. In addition, signal input ranges are easy to change with jumpers on the main board. The Falcon has a 0.56 " bright red LED display for high visibility.

Compactly designed for applications requiring minimal rear panel depth, the Falcon fits a standard $1 / 8$ DIN panel cutout $(92 \mathrm{~mm} \times 45 \mathrm{~mm})$ and requires less than $3^{\prime \prime}$ behind the panel. A screw terminal connector is a standard feature for easy wiring of the power supply and signal input connections.

Mounting Requirements

The Falcon series $1 / 8$ DIN indicators require a panel cutout of 1.77" $(45 \mathrm{~mm})$ high by 3.62 " $(92 \mathrm{~mm}$) wide. To install the Falcon into a panel cutout, remove the clips from the side of the meter. Slide the meter through your panel cutout, then slide the mounting clips back on the meter. Press evenly to ensure a proper fit.

Engineering Label Placement
If replacement of the engineering unit label is required, place the tip of a ball-point pen into the small hole at the base of the engineering label in the bezel. Slide the label up until it pops out. Grasp and remove. Slide the new label half the distance in, then use the ball-point pen to slide it down into place.

DISPLAY

Type: 7-segment, red LED
Height: 0.56 " (14.2 mm)
Decimal Point: 3-position programmable,
internally or on the terminal block
Overrange indication: most significant digit = "1"; other digits blank
Polarity: Automatic, with "-" indication, "+" indication implied

POWER REQUIREMENTS
AC Voltages: 120 or $220 \mathrm{VAC}, \pm 10 \%$, 50/60Hz
DC Voltages: $9-32 \mathrm{VDC}, \pm 1 \%$
Power Consumption: 3VA

ENVIRONMENTAL

Operating Temperature: 0 to $55^{\circ} \mathrm{C}$
Storage Temperature: -10 to $60^{\circ} \mathrm{C}$
Relative Humidity: 0 to 85% non-condensing
Temperature Coefficient:
$\left(\pm 0.01 \%\right.$ of input ± 0.05 count) $/{ }^{\circ} \mathrm{C}$
Warm-up Time: Less than 15 minutes
NOISE REJECTION
NMRR: $50 \mathrm{~dB}, 50 / 60 \mathrm{~Hz}$
CMRR: (with $1 \mathrm{~K} \Omega$ unbalanced @ 60Hz):
90dB min.
ANALOG TO DIGITAL CONVERSION
Technique: Dual slope integration
Rate: 3 samples per second, nominal

MECHANICAL

Bezel: 3.79"x 1.89" x .51"
$(96 \times 48 \times 13 \mathrm{~mm})$
Depth: $2.94^{\prime \prime}$ (74.7 mm)
Panel Cutout: $3.62^{\prime \prime} \times 1.77^{\prime \prime}$
($91.9 \times 45 \mathrm{~mm} 1 / 8 \mathrm{DIN}$)
Case Material: 94 V -1, UL rated Noryl®
Weight: 9.0oz (255.1g)

INPUTS: DC Voltage

Input Range	Display Resolution	Input Impedance	Maximum Overload
200 mV	$100 \mu \mathrm{~V}$	$>100 \mathrm{M} \Omega$	100 V
2 V	1 mV	$>10 \mathrm{M} \Omega$	250 V
20 V	10 mV	$>10 \mathrm{M} \Omega$	250 V
200 V	100 mV	$>9.9 \mathrm{M} \Omega$	250 V

ACCURACY @ 25° C
$\pm 0.1 \%$ of reading ± 1 count

Wiring Diagram

Input Signal: Connect the signal to be monitored to the IN HI and IN LO terminals. IN HI is terminal \#1, IN LO is terminal \#2.

Supply Power: Connect the supply power to terminals \#11 and \#12. Note that if AC power is supplied, terminal \#11 is for Neutral, and terminal \#12 is for Hot. If DC power is used, terminal \#11 is for -DC, and \#12 is for +DC.

Display Hold: This feature allows you to hold the displayed value indefinitely. A remote switch can be used to make the connection. To activate the display hold, pins \#3 and \#4 (Hold +REF). This connection must be kept isolated from other circuitry. To hold multiple units, separate poles of the switch must be used to maintain the isolation.

These instruments are designed for maximum safety to the operator when mounted in a panel according to instructions. They are not to be used unmounted or for exploratory measurements in unknown circuits.

Before switching the instrument on, make sure the supply voltage matches the power source required of the instrument as indicated on the hook-up label affixed to the instrument.

Decimal Point Selection

From terminal block: The decimal point can be set from the rear screw terminal block by connecting the appropriate decimal point (DP 1, 2, 3,) to the DP C terminal. The J105 jumper must be in the D position (see diagram under "From front panel").

From front panel: The decimal point can also be selected by removing the front bezel from the meter. Move the push-on jumper J105 across the correct letter.

Voltage Range Selection

All Falcon Indicators are configured initially per the customer specifications. Range changes can be accomplished as follows:

Disconnect power from the unit. Remove the unit from the panel. Remove the front bezel by inserting slotted screwdriver in the vertical slots on either side of the bezel and then turning to pry the bezel off. Unscrew the two Phillips head screws at either side of the circuit board. Finally, push on the green connector assembly in the back of the unit to slide the main circuit board out from the meter. Change jumpers according to the chart below.

Note: If a new range is selected, the calibration procedure must also be performed.

Input Range	J 103	J 106	$\mathrm{JU101}$	$\mathrm{JU102}$
200 mV	C	R	V	Yes
2 V	A	R	V	No
20 V	B	R	V	No
200 V	D	R	V	No

品

Note: JU101 and JU102 are hard wire jumpers, and are removed by cutting them. Resoldering the JU jumpers is not recommended. If this is required, or if a function is to be changed (from volts to current), Simpson recommends returning the Falcon to the factory or an Authorized Service Center. After moving the jumpers to the desired location, put the Falcon back together and install in your panel, or proceed to calibration.

Display Scaling

The Falcon can be easily scaled for a broad range of engineering units. The meter may be scaled up to two times, or down to $1 / 5$ the value of the input.

1) Remove the front bezel with a small screwdriver.
2) Apply the full scale input to the meter.
3) Adjust the potentiometer VR101 located on the right side the display board to the desired scaled value.
4) Replace the bezel carefully. A card of labels is provided for alternative engineering units such, as percent.

Adjust VR101

Calibration

The Falcon is calibrated at the factory per order. If you change the range, and have moved the jumpers, your Falcon will need to be recalibrated.

1) Remove the bezel with a small screwdriver.
2) Apply an input signal to the connector.
3) Adjust the potentiometer (VR101) located on the right side of the display board until the display indicates the value of the input signal or desired display value. For example, if a 19.99 V signal is applied, adjust the potentiometer until the display indicates $19.99(\mathrm{~V})$.
4) Replace the bezel carefully, and install the meter.

Excitation Output

An optional feature of the Falcon is the 12VDC or 24VDC Excitation output. The Falcon is set at the factory per your order to include an Excitation plug-in printed circuit board in the range you specify. Excitation supply allows you to power external transformers and transducers without having to set up additional DC power sources for them.

If your application changes, you can easily change the Excitation value. The Excitation supply can be reconfigured by moving push-on jumper J201 (located on the Excitation board). To change the Excitation output value, move the jumper to the correct position shown in the diagram.

Application Example

A manufacturing plant requires a low cost digital meter to replace an analog panel meter on a 150 VDC motor. The upgrade is required because the operator requires a display hold feature that is not available on the analog model.

A Falcon 3-1/2 digit indicator (200DCV) can fit this application. The meter needs no additional scaling before being installed into the panel. A switch is required for the display hold option, as one is not supplied by Simpson.

The meter is installed in parallel with the motor like the analog meter, and is ready to be placed in the panel.

The Falcon is less than $3^{\prime \prime}$ deep, fitting well into the restricted panel space. It will take up about as much space as the analog meter it replaced. In addition, display hold is a stan-

dard feature on the Falcon. By shorting connections \#3 and \#4, the operator can hold the display to take a reading, and then remove the short to reactivate the indication mode.

A switch can be used to short the connections. The meter is shipped ready to install, keeping down-time to a minimum.

Ordering Information

Safety Symbols

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly adhered to, could result in damage to or destruction of part or all the instrument.

Accessories

Portable

External shunts enable DC volt digital panel meters to indicate higher DC currents than can be provided with self contained internal shunt meters. The shunt is installed in series with the load and the source. The shunts provide a DCmV drop which is sent to the display unit. The Falcon can be scaled to display the current between the load and the source. Simpson offers portable and switchboard shunts.

Each shunt includes 5' leads (0.065Ω resistance). Accuracy is within $\pm 1 \%$ of rating.

Ordering Information

Switchboard (50 mV$)^{\star \star}$

Portable Shunts (50 mV)*					Switchboard (50 mV)**		
Amp	Voltage Drop	Jumper Across R114	Range of Readout	Catalog Number	Amp	Voltage Drop	Catalog Number
1	50 mV	Yes	1.00	06700	100	50mV	06500
5	50 mV	Yes	5.00	06706	150	50 mV	06503
10	50 mV	Yes	10.0	06704	200	50 mV	06504
15	50 mV	Yes	15.0	06705	250	50 mV	06505
20	50 mV	Yes	20.0	N/A	300	50 mV	06506
25	50 mV	Yes	25.0	06707	400	50 mV	06507
30	50 mV	None	30.0	06708	500	50 mV	06508
50	50 mV	None	50.0	06709			
75	50 mV	None	75.0	06711	A por	le or	chboard
100	50 mV	Yes	100	06713	shunt	ould be	used with
150	50 mV	Yes	150	06714	Falcon		$m \mathrm{~V} D \mathrm{DC}$
200	50 mV	Yes	200	06715	Falcon	ries	mVDC
10	100mV	Yes	10.0	06716	meters.	Specifi	tions can
30	100 mV	Yes	30.0	N/A	be fou	on da	heet for
100	100 mV	None	100.0	06717	DC Volt		
200	100 mV	Yes	200	N/A			
10	200 mV	Yes	10.00	N/A			
20	200 mV	Yes	20.0	N/A	**All	itchboar	shunts
100	200 mV	Yes	100.0	N/A	require	umper a	oss R114.
200	200 mV	None	199.9	N/A			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Panel Meters category:
Click to view products by Simpson manufacturer:

Other Similar products are found below :
M00558-00 $\frac{70.360 .4828 .0}{} \underline{72331-00}$ 85310-25 $\frac{86642-00}{87268-13}$ 87316-00 87719-26 98107-56 HB8260-R36-90 DMS-20ACV-3-R-C EM11DINAV81XR1X 25.325.3253.1 25.325.4253.1 25.330.0453.1 20046-20 20182-23 AP1021 25.320.5053.0 25.350.3453.1 25.394.3653.1 $25.521 .3253 .028006-01$ 04.630.1080.0 20078-20 EM11DINAV81XO1X 85874-26 87166-00 87895-00 28000-03 K3GN-NDT1-FLK 24VDC 82322K-11 86641-00 87004-00 HB8280R2490 HB8260R4890 SCE016MD3MV0W10 20125-21 86640-00 PG-100103GP PG-100-102RP PG-100B-102R-H PG-100B-103R PG-100B-102R PG-100N-103R-W PG-100N-103R PG-100N-102R PG-100102GH PG-100-103RP PG-100B-103R-M

