

www.sinai-power.com

N-channel Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V) at TJmax.	700			
R _{DS(on)} max. at 25°C (mΩ)	V _{GS} =10V 360			
Q _g max. (nC)	30			
Q _{gs} (nC)	8.5			
Q _{gd} (nC)	7.5			
Configuration	single			

Features

- New Technology For High Voltage Device
- ID=11.5A(Vgs=10V)
- Ultra Low Gate Charge
- Improved dv/dt Capability
- RoHS Compliant

Applications

- Switching Mode Power Supplies (SMPS)
- Power factor correction (PFC)
- Uninterruptible Power Supply (UPS)

ORDERING INFORMATION					
Device	SPC65R360G	SPE65R360G	SPD65R360G		
Device Package	TO-220F	TO-251	TO-252		
Marking		65R360G			

ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise noted)					
		Liı	Unit		
Parameter	Symbol	SPC65R360G	SPE65R360G SPD65R360G		
Drain to Source Voltage	V _{DSS}	650	650	V	
Continuous Drain Current (@T _C =25°C)		11.5 ⁽¹⁾	11.5 ⁽¹⁾	А	
Continuous Drain Current (@T _C =100°C)		7 (1)	7 (1)	Α	
Drain current pulsed ⁽²⁾	I _{DM}	42 (1)	42 (1)	Α	
Gate to Source Voltage	V _{GS}	±30	±30	V	
Single pulsed Avalanche Energy ⁽³⁾	E _{AS}	144	144	mJ	
MOSFET dv/dt ruggedness (@V _{DS} =0~400V)	dv/dt	25	25	V/ns	
Peak diode Recovery dv/dt ⁽⁴⁾	dv/dt	15	15	V/ns	
Total power dissipation (@T _c =25°C)		32.6	101	W	
Derating Factor above 25°C	Pn	0.26	0.97	W/ºC	
Operating Junction Temperature & Storage Temperature	T _{STG} , T _J	-55 to + 150		°C	
Maximum lead temperature for soldering purpose	TL	260		°C	
Mounting torque ⁽⁵⁾		0.4	N.m		

Notes

- 1. Drain current is limited by maximum junction temperature.
- 2. Repetitive rating : pulse width limited by junction temperature.
- 3 L = 72mH, I_{AS} = 2A, V_{DD} = 50V, R_G=25 Ω , Starting at T_J = 25°C
- 4. $I_{SD} \leq I_D$, di/dt = 100A/us, $V_{DD} \leq BVdss$, Starting at $T_J = 25^{\circ}C$
- Mounting consideration for TO220 Fullpack: M3 screw plus flat washer is suggested, free of burr between devices and contact area, the devices are to be mounted by a believed burry the activity of the second second

the devices are to be mounted to a hole not larger than 3.6mm in contact diameter (chamfer included).

1

www.sinai-power.com

THERMAL CHARACTERISTICS						
Parameter		Va	Unit			
	Symbol	SPC65R360G	SPE65R360G SPD65R360G			
Thermal resistance, Junction to case	R _{thjc}	3.83	1.24	°C/W		
Thermal resistance, Junction to ambient	R _{thja}	80	62	°C/W		

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Off Characteristics			1	1	1	
Drain to source breakdown voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	650			V
Breakdown voltage temperature coefficient	ΔBV _{DSS} / ΔTJ	I_D =250uA, referenced to 25°C		0.7		V/°C
Drain to course lookage ourrent	1	V _{DS} =650V, V _{GS} =0V			1	uA
Drain to source leakage current	I _{DSS}	V _{DS} =650V, T _C =125°C			10	uA
Gate to source leakage current, forward	lasa	V _{GS} =30V, V _{DS} =0V			100	nA
Gate to source leakage current, reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA
On Characteristics						
Gate threshold voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250uA	2	3	4	V
Drain to source on state resistance	R _{DS(ON)}	V _{GS} =10V, I _D =6A		300	360	mΩ
Forward Transconductance	Gfs	V _{DS} = 20 V, I _D = 6A		8		S
Dynamic Characteristics						
Input capacitance	Ciss			1200		pF
Output capacitance	Coss	V _{GS} =0V, V _{DS} =50V, f=1MHz		45		
Reverse transfer capacitance	C _{rss}			3.5		
Turn on delay time	t _{d(on)}			11		
Rising time	tr	−V _{DS} =380V, I _D =11.5A, −R _G =18Ω, _V _{GS} =10V		5		ns
Turn off delay time	t _{d(off)}			50		- 115
Fall time	t _f			5		
Total gate charge	Qg			24	30	
Gate-source charge	Q _{gs}	$I_{D}=11.5A$		8.5		nC
Gate-drain charge	Q_gd			7.5]

SOURCE TO DRAIN DIODE RATINGS CHARACTERISTICS						
Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous source current	I _S	Integral reverse p-n Junction diode in the MOSFET			11.5	А
Pulsed source current	I _{SM}				42	А
Diode forward voltage drop.	V _{SD}	I _S =11.5A, V _{GS} =0V		0.9	1.3	V
Reverse recovery time	Trr	I _S =11.5A, V _{GS} =0V, dI _F /dt=100A/us		220		ns
Reverse recovery Charge	Qrr			2.2		uC

Document Number: 16006

For technical questions, contact: <u>Tech@Sinai-power.com</u>. THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

www.sinai-power.com

Fig1. Output characteristics

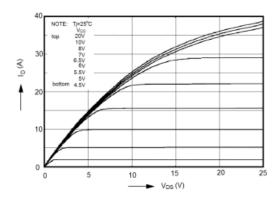


Fig3. Gate charge characteristics

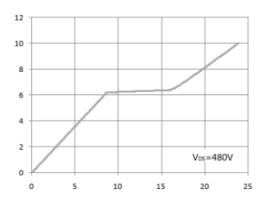
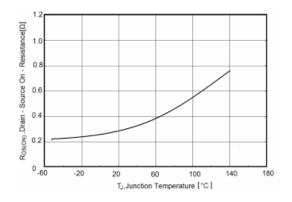



Fig 5. RDS(ON) vs junction temperature

Fig2. Maximum Drain Current vs. Case Temperature

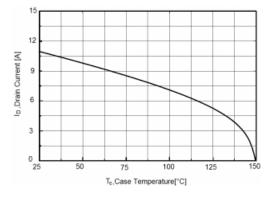
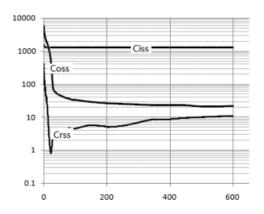
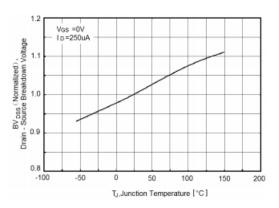




Fig 4. Capacitance Characteristics

Fig 6. Temperature vs. Drain-to-Source Voltage

3 For technical questions, contact: <u>Tech@Sinai-power.com</u>.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

www.sinai-power.com

Sinai Power Technologies

ig 7. Safe operating area (TO-220F)

Sinai-power

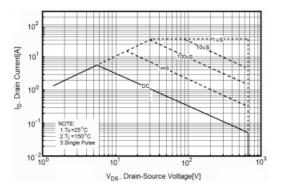


Fig 9. Safe operating area (TO-251/252)

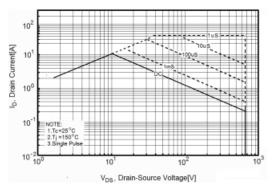


Fig 11. Forward characteristics of reverse diode

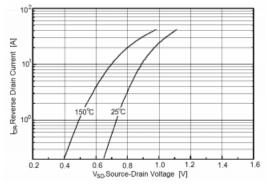


Fig 13. Gate charge test circuit & waveform

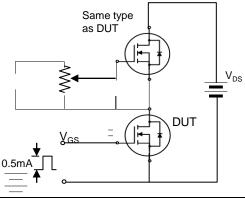


Fig 8. Transient thermal impedance (TO-220F)

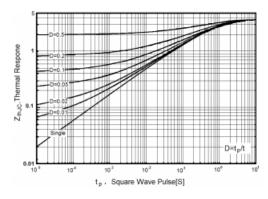


Fig 10. Transient thermal impedance (TO-251/252)

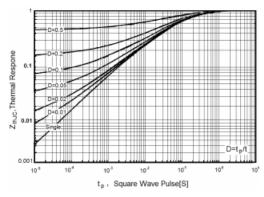
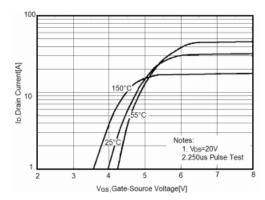
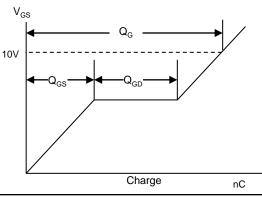
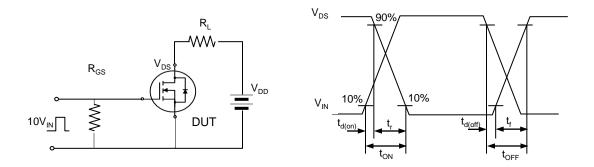




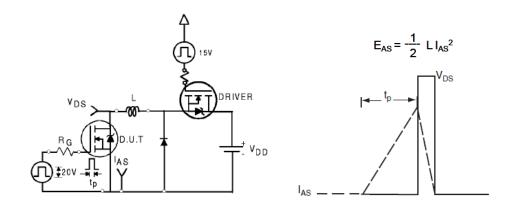
Fig 12. Transfer characteristics

16-0501-Rev P0

4 For technical questions, contact: <u>Tech@Sinai-power.com</u>.


Document Number: 16006

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.


www.sinai-power.com

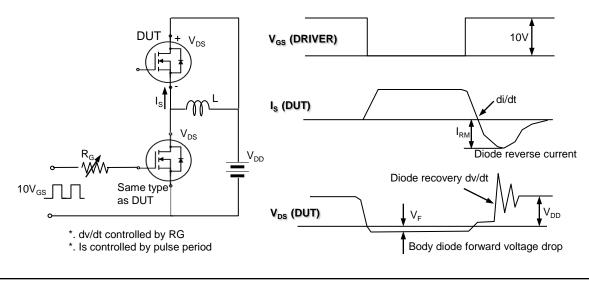

Fig 14. Switching time test circuit & waveform

Fig 15. Unclamped Inductive switching test circuit & waveform

Fig 16. Peak diode recovery dv/dt test circuit & waveform

For technical questions, contact: <u>Tech@Sinai-power.com</u>. THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

www.sinai-power.com

Disclaimer

- SINAI assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SINAI products described or contained herein.
- Specifications of any and all SINAI products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- In the event that any or all SINAI products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- This catalog provides information as of Nov. 2015. Specifications and information herein are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Sinai Power manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3