

Features

- Low power consumption
- Low temperature coefficient
- Built-in hysteresis characteristic
- High input voltage (up to 8V)
- Output voltage accuracy: tolerance \pm 1% or \pm 2%
- SOT23-3 and SOT23 package

Applications

- Battery checkers
- Level selectors
- Power failure detectors
- Microcomputer reset
- Battery memory backup
- Non-volatile RAM signal storage protectors

General Description

The SSP61C series devices are a set of three terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 0.9V to 5.0V. The voltage detectors consist of a high-precision and low power consumption standard voltage source as well as a comparator,

hysteresis circuit, and an output driver (CMOS inverter or NMOS open drain). CMOS technology ensures low power consumption.

Although designed primarily as fixed voltage detectors, these devices can be used with external components to detect user specified threshold voltages.

Part No.	Det. Voltage	Hys. Width	Output	Tolerance	Package
SSP61CC0902MR	0.9V	4%	CMOS	±1% or ±2%	
SSP61CN0902MR	0.9V	4%	NMOS	±1% or ±2%	
SSP61CC1002MR	1.0V	4%	CMOS	±1% or ±2%	
SSP61CN1002MR	1.0V	4%	NMOS	±1% or ±2%	
SSP61CC1102MR	1.1V	4%	CMOS	±1% or ±2%	
SSP61CN1102MR	1.1V	4%	NMOS	±1% or ±2%	SOT23-3
SSP61CC1202MR	1.2V	4%	CMOS	±1% or ±2%	50125
SSP61CN1202MR	1.2V	4%	NMOS	±1% or ±2%	
		4%		±1% or ±2%	
SSP61CC5002MR	5.0V	4%	CMOS	±1% or ±2%	
SSP61CN5002MR	5.0V	4%	NMOS	±1% or ±2%	

Selection Table

Order Information

SSP61C1234567

Designator	Symbol	Description	
()	С	CMOS output	
(I)	Ν	NMOS output	
23	VOUT	Output Voltage(0.9~5.0V)	
	02	\pm 2% accuracy	
40	01	\pm 1% accuracy	
6	Μ	Package:SOT23-3	
•	Ν	Package:SOT23	
$\overline{(7)}$	R	RoHS / Pb Free	
U	G	Halogen Free	

Block Diagram

Typical Application Circuits

Output Table & Curve

Marking Rule

① Represents integer of detect voltage and CMOS Output

MARK	CONFIGURATION	VOLTAGE (V)
А	CMOS	0.X
В	CMOS	1.X
С	CMOS	2.X
D	CMOS	3.X
E	CMOS	4.X
F	CMOS	5.X
Н	CMOS	6.X

N-Channel Open Drain Output

MARK	CONFIGURATION	VOLTAGE (V)
ĸ	N-ch	0.X
Ľ	N-ch	1.X
М	N-ch	2.X
N	N-ch	3.X
P	N-ch	4.X
R	N-ch	5.X
S	N-ch	6.X

②Represents decimal number of detect voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
0	X.0	5	X.5
1	X.1	6	X.6
2	X.2	7	X.7
3	X.3	8	X.8
4	X.4	9	X.9

③ Represents accuracy

MARK	ACCURACY
3	2%
1	1%

④Represents production lot number

Based on the internal standard. (G, I, J, O, Q, W excepted)

Absolute Maximum Ratings

Supply Voltage0.3	V to 8V
Operating Temperature40°C	to 85℃

Storage Temperature-50°C to 125℃

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
θ_{JA}	Thermal Resistance (Junction to Ambient) (Assume no ambient airflow, no heat sink)	SOT23-3	500	°C/W
P _D	Power Dissipation	SOT23-3	0.20	W

Note: P_D is measured at Ta= 25 $^\circ\!\!\!\mathrm{C}$

Electrical Characteristics

V_{DF}=0.8V~5.0V

Ta=25°C

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{DET}	Detection Voltage	V _{DF} =0.8V~5.0V		V _{DF} *0.98	V_{DF}	V _{DF} *1.02	V
V _{HYS}	Hysteresis Width	-		0.02*V _{DET}	0.05^*V_{DET}	0.10*V _{DET}	V
			Vin=1.5V	-	0.7	2.3	
I _{DD} Operating Current		Vin=2.0V		-	0.8	2.7	
	Vin=3.0V		-	0.9	3.0	μA	
		Vin=4.0V		-	1.0	3.2	
			Vin=5.0V	-	1.1	3.6	
V_{DD}	Operating Voltage	-	-	0.7	-	10	V
I _{OL}	Output Sink Current	2V	V _{OUT} =0.2V	0.5	1	-	mA
$\frac{\Delta V_{\scriptscriptstyle DET}}{V_{\scriptscriptstyle DF} \Delta T_a}$	Temperature Coefficient	-	-25℃ <ta<125℃< td=""><td>-</td><td>±100</td><td>-</td><td>ppm/°C</td></ta<125℃<>	-	±100	-	ppm/°C

Low Power Voltage Detector

Typical Performance Characteristics

(1) Output Voltage vs Input voltage

(2) Supply Current vs. Input Voltage

1.E-05

1.E-06

1.E-07

1.E-08

0

1

2

3

Input voltage (V)

4

Supply current(A)

Detect Voltage=0.9V

25°C

70°C

5

Application Circuits

Microcomputer Reset Circuit

Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power line interruptions. The following examples show how different output configurations perform a reset function in various systems. NMOS open drain output application for separate power supply

NMOS open drain output application with R-C delay

Package Information

3-pin SOT23-3 Outline Dimensions

Sumbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950	0.950(BSC)		BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

3-pin SOT23 Outline Dimensions

Sumbol	Dimensions	In Millimeters	Millimeters Dimensions In	
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
e	0.950 TYP.		0.037	'TYP.
e1	1.800	2.000	0.071	0.079
L	0.550	REF.	0.022	REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Siproin manufacturer:

Other Similar products are found below :

CAT853STBI-T3 RT9818C-27GU3 DS1232L NCV302HSN45T1G STM6710FWB7F PT7M6127NLTA3EX XC6118C25AGR-G ISL88011IH526Z-TK ISL88013IH529Z-TK ISL88705IP846Z ISL88706IP831Z ISL88708IB844Z ISL88708IP831Z TCM811MERCTR X40420S14-A X40421S14-C X40430S14-A X40430S14I-A X40430S14I-B X40431S14-A X40431S14-B X40431S14-C X40431S14I-A X40431S14I-B X40431S14I-C X4043P-2.7 X4043PI-2.7 X4043S8-2.7T1 X4043S8IZ-2.7 X4043S8IZT1 X4043S8T1 X4045P X4045PI X4045PI-2.7 X4045S8-2.7T1 X4045S8IZ X4045S8T1 X4163P X4163P-2.7 X4163PI X4163PI-2.7 X4163S8 X4165P X4165P-2.7 X4165PI X4165PI-2.7 X4165S8I-2.7 X4283S8I X4323S8-2.7 X4323S8I-2.7