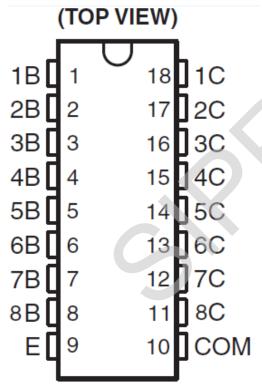
ULN2803 series High-voltage المالية التحمين الله المالية ال

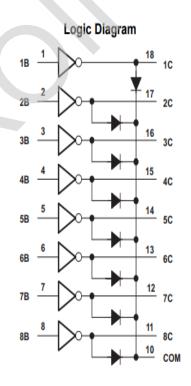
Features

- Relay-Driver Applications
- High-Voltage Outputs:50V
- Output Clamp Diodes

• 500-mA-Rated Collector Current(single output)


• Inputs Compatible With Various Types of Logic

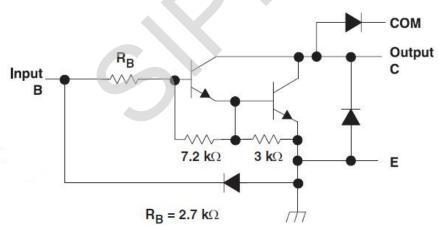
General Description


The ULN2803 is high-voltage high-current Darlington transistor arrays each containing seven open collector common emitter pairs. Each pair is rated at 500mA. Suppression diodes are included for inductive load driving, the inputs and outputs are pinned in opposition to simplify board layout.

These devices are capable of driving a wide range of loads including solenoids, relays, DC motors, LED displays, filament lamps, thermal print-heads and high-power buffers. The ULN2803 is available in both a small outline 18-pin package (SOP18).

Pin Assignments

Connection Diagram



ULN2803 series High-voltage الملك الملك الملك المحافظ الملك المحافظ المحاف

Pin Descriptions

Pin Name	Function
1B	Input pair1
2B	Input pair2
3B	Input pair3
4B	Input pair4
5B	Input pair5
6B	Input pair6
7B	Input pair7
8B	Input pair8
E	Common Emitter (ground)
СОМ	Common Clamp Diodes
8C	Output pair8
7C	Output pair7
6C	Output pair6
5C	Output pair5
4C	Output pair4
3C	Output pair3
2C	Output pair2
1C	Output pair1
	1B 2B 3B 4B 5B 6B 7B 8B E COM 8C 7C 6C 5C 4C 3C 2C

Functional Block Diagram

Note: All resistor values shown are nominal.

The collentor-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schoottky diode should be added to clamp negative undershoots.

ULN2803 series High-voltage High-current Darlington Transistor Arrays

Absolute Maximum Ratings (1)

At 25°C free-air temperature (unless otherwise noted)

Symbol	Parameter		Min	Max	Unit
V _{cc}	Collector to emitter voltage			50	V
V _R	Clamp diode reverse voltage(2)			50	V
VI	Input voltage(2)			30	V
I _{CP}	Peak collector current	See typical characteristics		500	mA
I _{OK}	Output clamp current			500	mA
Ι _{τε}	Total emitter-terminal current			-2.5	А
T _A	Operating free-air temperature range	ULN2803	-20	70	°C
θ_{JA}	Thermal Resistance Junction-to-Ambient(3)			63	°C/W
θ _{JC}	Thermal Resistance Junction-to-Case(4)			12	
ТJ	Operating virtual junction temperature			150	°C
T _{STG}	Storage temperature range			150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

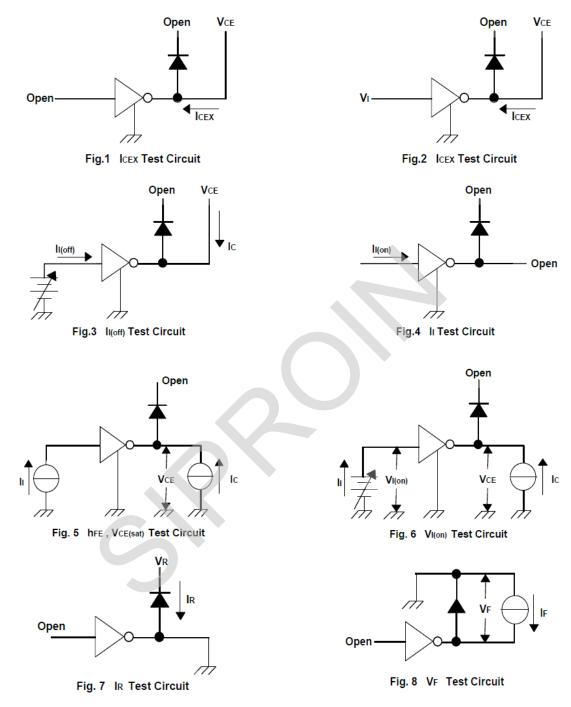
- (2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
- (3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
- (4) Maximum power dissipation is a function of TJ(max), θJC, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJC. Operating at the absolute maximum TJ of 150°C can affect reliability.

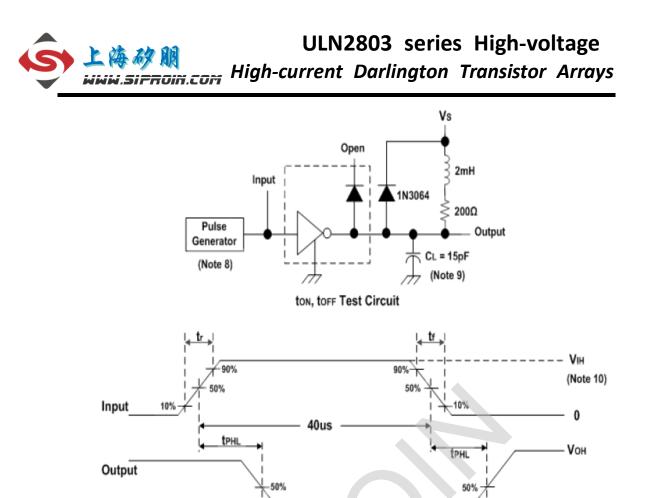
Symbol	Parameter	Min	Мах	Unit
VCC	Collector to Emitter voltage	-	50	V
ТА	Operating Ambient Temperature	40	+105	°C

Recommended Operating Conditions

	Parameter	Test Test Conditions		ULN2803			Unit		
Faiaineter		Figure	Test Conditions		MIN	TYP	MAX	Unit	
V I(on)	On-state input voltage	Figure 6	V _{CE} = 2 V	IC = 200 mA			2.4		
				IC = 250 mA			2.7		
				IC = 300 mA			3		
	Collector-emitter saturation voltage	Figure 5	IJ = 250 μA,	IC = 100 mA		0.9	1.1		
V CE(sat)			I _I = 350 μA,	I _C = 200 mA		1	1.3	V	
			II = 500 μA,	IC = 350 mA		1.2	1.6		
	Collector cutoff current	Figure 1	V _{CE} = 50 V,	lı = 0			50		
CEX		Figure 2	V _{CE} = 50 V, T _A = +105°C	lı = 0			100	μA	
V F	Clamp forward voltage	Figure 8	I _F = 350 mA			1.7	2	V	
l(off)	Off-state input current	Figure 3	V _{CE} = 50 V, I _C = 500 µA		50	65		μA	
		Figure 4	VI = 3.85 V			0.93	1.35		
Ц	Input current		VI = 5 V					mA	
			VI = 12 V						
	Clamp reverse current	Figure 7					50		
IR			V _R = 50 V	T _A = 70°C			100	μA	
Ci	Input capacitance		$V_{I} = 0$, $f = 1 MHz$			15	25	pF	

Electrical Characteristics(TA=+25℃, unless otherwise specified)


Switching Characteristics (T_A = +25°C, unless otherwise specified)


	Parameter	Test Conditions	ULN2803			UNIT
			MIN	TYP	MAX	
t PLH	Propagation delay time, low- to high-level output	See Figure 9		0.25	1	μs
t PHL	Propagation delay time, high- to low-level output	See Figure 9		0.25	1	μs
V _{OH}	High-level output voltage after switching	V _S = 50 V, I _O = 300 mA, See Figure 9	VS-20			mV

4

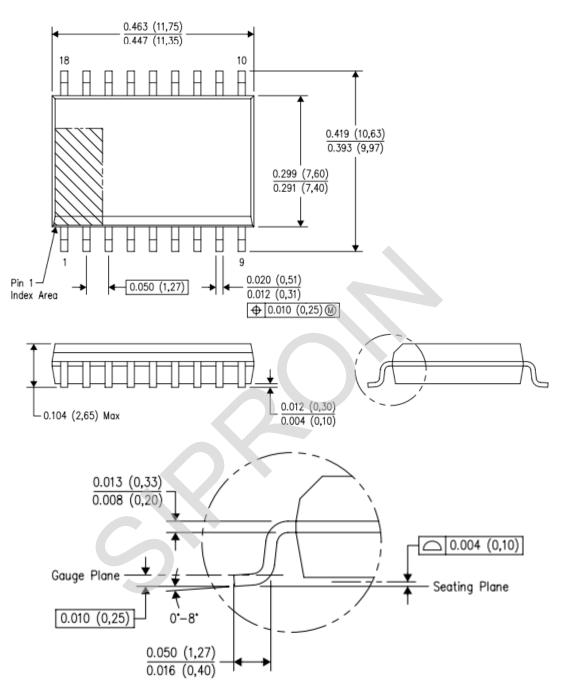
Parameter Measurement Information

Voltage Waveform

Fig. 9 Latch-Up Test Circuit and Voltage Waveform

Notes: 8. The pulse generator has the following characteristics:

Pulse Width=12.5Hz, output impedance 50Ω, tr≤5ns, tr≤10ns.


9. C_L includes prove and jig capacitance.

10. V_{IH}=3V

VOL

SOP18 Outline Dimensions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by Siproin manufacturer:

Other Similar products are found below :

281287X BDV64B SBSP52T1G Jantx2N6058 LB1205-L-E 2N6053 MPSA63 2N6667 NTE256 TIP120 MJ11028 TIP140 Jantx2N6352 TIP127L-BP 2N6383 ULN2803 ULN2003ALM/TR ULN2803ADM/TR HT62783ARWZ ULN2803 ULN2003A ULN2003 SSTA28MGT116 TM2803L Aip2003SA16.TR SAP2003SCTR AiP2003LSA.TR BCV27 MMBTA14 MMBTA14 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMBTA14-TP MMSTA28T146 BSP50H6327XTSA1 NTE2557 NJVNJD35N04T4G CP527-2N6299-CT5 CP127-2N6301-CT5 MPSA29-D26Z FJB102TM FMMT38C BCV29 BCV47 FMMT734 BCV46E6327HTSA1