Features

- Any frequency between 1 MHz and 220 MHz accurate to 6 decimal places
- LVPECL and LVDS output signaling types
- 0.6ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- Frequency stability as low as $\pm 10 \mathrm{ppm}$
- Industrial and extended commercial temperature ranges
- Industry-standard packages: $3.2 \times 2.5,5.0 \times 3.2$ and $7.0 \times 5.0 \mathrm{mmxmm}$
- For frequencies higher than 220 MHz , refer to SiT9122 datasheet

Applications

- 10GB Ethernet, SONET, SATA, SAS, Fibre Channel, PCI-Express
- Telecom, networking, instrumentation, storage, servers

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Typ.	Max.	Unit	Condition
LVPECL and LVDS, Common Electrical Characteristics						
Supply Voltage	Vdd	2.97	3.3	3.63	V	
		2.25	2.5	2.75	V	
		2.25	-	3.63	V	Termination schemes in Figures 1 and 2-XX ordering code
Output Frequency Range	f	1	-	220	MHz	
Frequency Stability	F_stab	-10	-	+10	ppm	Inclusive of initial tolerance, operating temperature, rated power supply voltage, and load variations
		-20	-	+20	ppm	
		-25	-	+25	ppm	
		-50	-	+50	ppm	
First Year Aging	F_aging1	-2	-	+2	ppm	$25^{\circ} \mathrm{C}$
10-year Aging	F_aging10	-5	-	+5	ppm	$25^{\circ} \mathrm{C}$
Operating TemperatureRange	T_use	-40	-	+85	${ }^{\circ} \mathrm{C}$	Industrial
		-20	-	+70	${ }^{\circ} \mathrm{C}$	Extended Commercial
Input Voltage High	VIH	70\%	-	-	Vdd	Pin 1, OE or $\overline{\text { ST }}$
Input Voltage Low	VIL	-	-	30\%	Vdd	Pin 1, OE or $\overline{\text { ST }}$
Input Pull-up Impedance	Z_in	-	100	250	$\mathrm{k} \Omega$	Pin 1, OE logic high or logic low, or $\overline{\mathrm{ST}}$ logic high
		2	-	-	$\mathrm{M} \Omega$	Pin 1, $\overline{\text { ST }}$ logic low
Start-up Time	T_start	-	6	10	ms	Measured from the time Vdd reaches its rated minimum value.
Resume Time	T_resume	-	6	10	ms	In Standby mode, measured from the time $\overline{\mathrm{ST}}$ pin crosses 50\% threshold.
Duty Cycle	DC	45	-	55	\%	Contact SiTime for tighter dutycycle
LVPECL, DC and AC Characteristics						
Current Consumption	Idd	-	61	69	mA	Excluding Load Termination Current, Vdd $=3.3 \mathrm{~V}$ or 2.5 V
OE Disable Supply Current	I_OE	-	-	35	mA	OE = Low
Output Disable Leakage Current	I_leak	-	-	1	$\mu \mathrm{A}$	OE = Low
Standby Current	I_std	-	-	100	$\mu \mathrm{A}$	$\overline{\mathrm{ST}}=$ Low, for all Vdds
Maximum Output Current	I_driver	-	-	30	mA	Maximum average current drawn from OUT+ or OUT-
Output High Voltage	VOH	Vdd-1.1	-	Vdd-0.7	V	See Figure 1(a)
Output Low Voltage	VOL	Vdd-1.9	-	Vdd-1.5	V	See Figure 1(a)
Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 1(b)
Rise/Fall Time	Tr, Tf	-	300	700	ps	20\% to 80\%, see Figure 1(a)
OE Enable/Disable Time	T_oe	-	-	115	ns	$\mathrm{f}=212.5 \mathrm{MHz}$ - For other frequencies, T_oe = 100ns + 3 period
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	$\mathrm{f}=100 \mathrm{MHz}$, VDD $=3.3 \mathrm{~V}$ or 2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=156.25 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$ or 2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=212.5 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$ or 2.5 V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	$\mathrm{f}=156.25 \mathrm{MHz}$, Integration bandwidth $=12 \mathrm{kHz}$ to 20 MHz , all Vdds
LVDS, DC and AC Characteristics						
Current Consumption	Idd	-	47	55	mA	Excluding Load Termination Current, Vdd $=3.3 \mathrm{~V}$ or 2.5 V
OE Disable Supply Current	I_OE	-	-	35	mA	OE = Low
Differential Output Voltage	VOD	250	350	450	mV	See Figure 2

Electrical Characteristics(continued)

Parameter and Conditions	Symbol	Min.	Typ.	Max.	Unit	Condition
LVDS, DC and AC Characteristics (continued)						
Output Disable Leakage Current	I_leak	-	-	1	$\mu \mathrm{A}$	OE = Low
Standby Current	I_std	-	-	100	$\mu \mathrm{A}$	ST = Low, for allVdds
VOD Magnitude Change	$\triangle \mathrm{VOD}$	-	-	50	mV	See Figure 2
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 2
VOS Magnitude Change	$\triangle \mathrm{VOS}$	-	-	50	mV	See Figure 2
Rise/Fall Time	Tr, Tf	-	495	700	ps	20\% to 80\%, see Figure 2
OE Enable/Disable Time	T_oe	-	-	115	ns	$\mathrm{f}=212.5 \mathrm{MHz}$ - For other frequencies, T_oe = 100ns + 3 period
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	$\mathrm{f}=100 \mathrm{MHz}$, VDD $=3.3 \mathrm{~V}$ or 2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=156.25 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$ or 2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=212.5 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$ or 2.5 V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	$\mathrm{f}=156.25 \mathrm{MHz}$, Integration bandwidth $=12 \mathrm{kHz}$ to 20 MHz , all Vdds

Pin Description

Pin	Map	Input	H or Open: specified frequency output L: output is high impedance
	OE	ST	Input
2	NC	H or Open: specified frequency output L: Device goes to sleep mode. Supply current reduces to I_std.	
3	GND	Power	No Connect; Leave it floating or connect to GND for better heat dissipation
4	OUT+	Output	VDD Power Supply Ground
5	OUT-	Output	Complementary oscillator output
6	VDD	Power	Power supply voltage

Top View

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	
VDD	-0.5	4	V
Electrostatic Discharge (HBM)	-	2000	
Soldering Temperature (follow standard Pb free soldering guidelines)	-	$\mathrm{C}^{\circ} \mathrm{C}$	

Thermal Consideration

Package	OJA, 4 Layer Board $\left({ }^{\circ} \mathrm{C} / W\right)$	$\theta \mathrm{JC}$, Bottom $\left({ }^{\circ} \mathrm{C} / W\right)$
7050, 6-pin	142	27
5032, 6-pin	97	20
3225, 6-pin	109	20

Environmental Compliance

Parameter	
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method2003
Moisture Sensitivity Level	MSL1 @ 260 ${ }^{\circ} \mathrm{C}$

SiT9121

1-220 MHz High Performance Differential Oscillator

Waveform Diagrams

Figure 1(a). LVPECL Voltage Levels per Differential Pin (OUT+/OUT-)

Figure 1(b). LVPECL Voltage Levels Across Differential Pair

Figure 2. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

Termination Diagrams
LVPECL:

Figure 3. LVPECL Typical Termination

Figure 4. LVPECL AC Coupled Termination

Figure 5. LVPECL with Thevenin Typical Termination

SiT9121

1-220 MHz High Performance Differential Oscillator

LVDS:

Figure 6. LVDS Single Termination (LoadTerminated)

SiT9121

1-220 MHz High Performance Differential Oscillator
The Smart Timing Choice ${ }^{\text {TM }}$

Dimensions and Patterns

Package Size - Dimensions (Unit: mm) ${ }^{[1]}$	Recommended Land Pattern (Unit: mm) ${ }^{[2]}$
$3.2 \times 2.5 \times 0.75 \mathrm{~mm}$	
$5.0 \times 3.2 \times 0.75 \mathrm{~mm}$	
$7.0 \times 5.0 \times 0.90 \mathrm{~mm}$	

Notes:

1. Top Marking: Y denotes manufacturing origin and $X X X X$ denotes manufacturing lot number. The value of " Y " will depend on the assembly location of the device.
2. A capacitor of value $0.1 \mu \mathrm{~F}$ between Vdd and GND is recommended.

Ordering Information

Ordering Codes for Supported Tape \& Reel Packing Method

Device Size	$8 \underset{(3 \mathrm{ku})}{\mathrm{mm} T \& R}$	8 mm T\&R (1ku)	$\begin{gathered} 8 \underset{(250 u)}{\mathrm{mm} ~ T \& R} \\ \hline \end{gathered}$	$12 \underset{(3 \mathrm{ku})}{\mathrm{mm}} \text { T\&R }$	$12 \underset{(1 \mathrm{ku})}{\mathrm{mm}} \mathrm{~T} R \mathrm{R}$	$\begin{gathered} 12 \mathrm{~mm} \text { T\&R } \\ (250 \mathrm{u}) \end{gathered}$	$16 \underset{(3 \mathrm{ku})}{\mathrm{mm}} \text { T\&R }$	$16 \underset{(1 \mathrm{ku})}{\mathrm{mm}} \mathrm{~T} \text {) }$	$\begin{gathered} 16 \mathrm{~mm}_{(250 \mathrm{u})} \text { T\&R } \\ \hline \end{gathered}$
$7.0 \times 5.0 \mathrm{~mm}$	-	-	-	-	-	-	T	Y	X
$5.0 \times 3.2 \mathrm{~mm}$	-	-	-	T	Y	X	-	-	-
$3.2 \times 2.5 \mathrm{~mm}$	D	E	G	T	Y	X	-	-	-

Frequencies Not Supported
Range 1: From 209.000001 MHz to 210.999999 MHz

Revision History

Version	Release Date	Change Summary
1.01	$2 / 20 / 13$	Original
1.02	$12 / 3 / 13$	Added input specifications, LVPECL/LVDS waveforms, packaging T\&Roptions
1.03	$2 / 6 / 14$	Added $8 m \mathrm{~m}$ T\&R option and $\pm 10 \mathrm{ppm}$
1.04	$4 / 8 / 14$	Included 1.8 V option for LVDS output only
1.05	$7 / 30 / 14$	Included Thermal Consideration table
1.06	$10 / 20 / 14$	Modified Thermal Consideration values. Preliminary removed from the title
1.07	$1 / 4 / 16$	Removed 1.8 V option

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard Clock Oscillators category:
Click to view products by SiTime manufacturer:
Other Similar products are found below :
EP1400SJTSC-125.000M $601137 \underline{601252}$ CSX750FBC-24.000M-UT CSX750FBC-33.333M-UT CSX750FCC-3.6864M-UT F335-12 F33525 DSC506-03FM2 ASA-20.000MHZ-L-T ASA-25.000MHZ-L-T ASA-27.000MHZ-L-T ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C-66.6666MHZ SiT1602BI-22-33E-50.000000E SIT8003AC-11-33S-2.04800X SiT8256AC-23-33E156.250000X SIT8918AA-11-33S-50.000000G SM4420TEV-40.0M-T1K SMA4306-TL-H F335-24 F335-40 F335-50 F535L-10 F535L-12 F535L-16 F535L-27 F535L-48 PE7744DW-100.0M CSX750FBC-20.000M-UT CSX-750FBC33333000T CSX750FBC-4.000M-UT CSX750FBC-7.3728M-UT CSX750FBC-8.000M-UT CSX-750FCC14745600T CSX750FCC-16.000M-UT CSX-750FCC40000000T CSX750FCC-4.000M-UT ASA-22.000MHZ-L-T ASA2-26.000MHZ-L-T ASA-40.000MHZ-L-T ASA-48.000MHZ-L-T ASA-60.000MHZ-
L-T ASF1-3.686MHZ-N-K-S XLH735025.000JU4I8 XLP725125.000JU6I8 XO37CTECNA10M XO57CRECNA16M

